Skip to main content
Log in

Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In the present work, we elaborated a synthetic lung surfactant composed of dipalmitoyl phosphatidylcholine (DPPC), phosphatidylglycerol, cholesterol and bovine serum albumin (BSA), as a vehicle to study the lung toxicity of pristine multi-walled carbon nanotubes (MWCNT). MWCNT were dispersed in surfactant, saline or saline containing DPPC, BSA, Pluronic® F68 or sodium dodecyl sulfate, for comparison. Dispersions were characterized visually, and by light microscopy, dynamic light scattering and transmission electronic microscopy (TEM). Deposition of surfactant-dispersed MWCNT in the lung of BALB/c mice upon single or repeated administrations was analyzed by histology and TEM. Inflammation and airway remodeling were assessed in bronchoalveolar lavage fluid (BALF) or lung tissue of mice by counting cells and quantifying cytokines, tumor growth factor (TGF)-β1 and collagen, and by histology. We found that the elaborated surfactant is more effective in dispersing MWCNT when compared to the other agents, while being biocompatible. Surfactant-dispersed MWCNT distributed all throughout the mouse airways upon single and repeated administrations and were observed in alveolar macrophages and epithelial cells, and in infiltrated neutrophils. Mice that received a single administration of MWCNT showed neutrophil infiltrate and greater concentrations of tumor necrosis factor (TNF)-α, keratinocyte-derived chemokine (KC) and interleukin (IL)-17 in BALF when compared to controls. After repeated MWCNT administrations, increases in macrophage number, KC and TGF-β1 levels in BALF, and collagen deposition and mucus hyperplasia in lung tissue were observed. Altogether, the elaborated lung surfactant could be a valuable tool to further study the toxicological impact of pristine MWCNT in laboratory animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al Faraj A, Cieslar K, Lacroix G, Gaillard S, Canot-Soulas E, Cremillieux Y (2009) In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett 9(3):1023–1027

    Article  PubMed  CAS  Google Scholar 

  • Bermudez E (1994) Recovery of particles from the pleural cavity using agarose casts—a novel method for the determination of fiber dose to the rat pleura. Inhal Toxicol 6(2):115–124

    Article  CAS  Google Scholar 

  • Bihari P, Vippola M, Schultes S, Praetner M, Khandoga AG, Reichel CA, Coester C, Tuomi T, Rehberg M, Krombach F (2008) Optimized dispersion of nanoparticles for biological in vitro and in vivo studies. Part Fibre Toxicol 5:14

    Article  PubMed  Google Scholar 

  • Buford MC, Hamilton RF Jr, Holian A (2007) A comparison of dispersing media for various engineered carbon nanoparticles. Part Fibre Toxicol 4:6

    Article  PubMed  Google Scholar 

  • Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y (2007) Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon 45(7):1419–1424

    Article  CAS  Google Scholar 

  • Elgrabli D, Abella-Gallart S, Aguerre-Chariol O, Robidel F, Rogerieux F, Boczkowski J, Lacroix G (2007) Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies. Nanotoxicology 1(4):266–278

    Article  CAS  Google Scholar 

  • Elgrabli D, Floriani M, Abella-Gallart S, Meunier L, Gamez C, Delalain P, Rogerieux F, Boczkowski J, Lacroix G (2008) Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part Fibre Toxicol 5:20

    Article  PubMed  Google Scholar 

  • Goerke J (1998) Pulmonary surfactant: functions and molecular composition. Biochim Biophys Acta 1408(2–3):79–89

    PubMed  CAS  Google Scholar 

  • Han SG, Andrews R, Gairola CG (2010) Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol 22(4):340–347

    Article  PubMed  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  • Kim SH, Franses EI (2005) New protocols for preparing dipalmitoylphosphatidylcholine dispersions and controlling surface tension and competitive adsorption with albumin at the air/aqueous interface. Colloids Surf B Biointerfaces 43(3–4):256–266

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, Nakanishi J (2010) Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology 276(3):143–153

    Article  PubMed  CAS  Google Scholar 

  • Kostarelos K, Bianco A, Prato M (2009) Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol 4(10):627–633

    Article  PubMed  CAS  Google Scholar 

  • Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, Sung JH, Lee BG, Lee JH, Yang JS, Kim HY, Kang CS, Yu IJ (2010) Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol 22(5):369–381

    Article  PubMed  CAS  Google Scholar 

  • Lison D, Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, Raymundo-Pinero E, Beguin F, Kirsch-Volders M, Fenoglio I, Fubini B (2008) Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 21(9):1698–1705

    Article  PubMed  Google Scholar 

  • Liu AH, Sun KN, Yang JF, Zhao DM (2008) Toxicological effects of multi-wall carbon nanotubes in rats. J Nanopart Res 10(8):1303–1307

    Article  CAS  Google Scholar 

  • Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Article  PubMed  CAS  Google Scholar 

  • Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M, Iijima S (2006) Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem Phys Lett 429:497–502

    Article  CAS  Google Scholar 

  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67(1):87–107

    Article  PubMed  CAS  Google Scholar 

  • Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, Shvedova AA, Castranova V (2008) Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–L97

    Article  PubMed  CAS  Google Scholar 

  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, Castranova V, Porter DW (2010) Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol 7:28

    Article  PubMed  Google Scholar 

  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231

    Article  PubMed  CAS  Google Scholar 

  • Mutlu GM, Budinger GR, Green AA, Urich D, Soberanes S, Chiarella SE, Alheid GF, McCrimmon DR, Szleifer I, Hersam MC (2010) Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett 10(5):1664–1670

    Article  PubMed  CAS  Google Scholar 

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Article  PubMed  CAS  Google Scholar 

  • Paradise M, Goswami T (2007) Carbon nanotubes—production and industrial applications. Mater Des 28(5):1477–1489

    Article  CAS  Google Scholar 

  • Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, Hong JT, Choi K (2011) A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol. doi:10.1007/s00204-011-0655-8

  • Peters A, Wichmann HE, Tuch T, Heinrich J, Heyder J (1997) Respiratory effects are associated with the number of ultrafine particles. Am J Respir Crit Care Med 155(4):1376–1383

    PubMed  CAS  Google Scholar 

  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard S, Battelli L, Schwegler-Berry D, Friend S, Andrew M, Chen BT, Tsuruoka S, Endo M, Castranova V (2010) Mouse pulmonary dose- and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology 269(2–3):136–147

    Article  PubMed  CAS  Google Scholar 

  • Riedl M, Diaz-Sanchez D (2005) Biology of diesel exhaust effects on respiratory function. J Allergy Clin Immunol 115(2):221–228

    Article  PubMed  CAS  Google Scholar 

  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC (2009) Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotech 4(11):747–751

    Article  CAS  Google Scholar 

  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2007) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1(2):118–129

    Article  CAS  Google Scholar 

  • Saito N, Usui Y, Aoki K, Narita N, Shimizu M, Hara K, Ogiwara N, Nakamura K, Ishigaki N, Kato H, Taruta S, Endo M (2009) Carbon nanotubes: biomaterial applications. Chem Soc Rev 38(7):1897–1903

    Article  PubMed  CAS  Google Scholar 

  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, Hubbs AF, Antonini J, Evans DE, Ku BK, Ramsey D, Maynard A, Kagan VE, Castranova V, Baron P (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289(5):L698–L708

    Article  PubMed  CAS  Google Scholar 

  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4):L552–L565

    Google Scholar 

  • Veldhuizen R, Nag K, Orgeig S, Possmayer F (1998) The role of lipids in pulmonary surfactant. Biochim Biophys Acta 1408(2–3):90–108

    PubMed  CAS  Google Scholar 

  • Wang L, Castranova V, Mishra A, Chen B, Mercer RR, Schwegler-Berry D, Rojanasakul Y (2010) Dispersion of single-walled carbon nanotubes by a natural lung surfactant for pulmonary in vitro and in vivo toxicity studies. Part Fibre Toxicol 7:31

    Article  PubMed  Google Scholar 

  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (ANR-08-CESA-017), the Centre National de la Recherche Scientifique, the Université de Strasbourg and the Réseau Alsace de Laboratoires en Ingénierie et Sciences pour l’Environnement. Carole Ronzani is the recipient of a PhD grant from the Ministère de l’Education Nationale, de la Recherche et de la Technologie. The authors thank the laboratory of the Unité de Pneumologie, d’Allergologie et de Pathologie respiratoire de l’environnement at the Hôpitaux Universitaires de Strasbourg, for endotoxin assays. They are also grateful to Pascal Kessler, Yves Lutz and Yannick Schwab (IGBMC) for fruitful discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Françoise Pons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronzani, C., Spiegelhalter, C., Vonesch, JL. et al. Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse. Arch Toxicol 86, 137–149 (2012). https://doi.org/10.1007/s00204-011-0741-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0741-y

Keywords

Navigation