Skip to main content

Advertisement

Log in

Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by progressive loss of pulmonary function. Drug-induced interstitial lung disease has been reported as a severe adverse effect of some drugs, such as bleomycin, amiodarone, and methotrexate. Based on good characteristics, drug-induced pulmonary fibrosis (PF) animal model has played a key role in our understanding of the molecular mechanisms of PF pathogenesis and recapitulates the specific pathology in patients and helps develop therapeutic strategies. Here, we summarize the mechanisms and characteristics of given fibrotic drug-induced animal models for PFs. Together with the key publications describing these models, this brief but detailed overview would be helpful for the pharmacological research with animal models of PFs.

Graphical abstract

Potential mechanisms underlying drug induced lung toxicity.

Highlights

  • Bleomycin mainly causes lung injuries via inducing DNA damage and bleomycin-ANXA2-YWHA-TFEB complex induces dysfunction of autophagy in AECs.

  • Amiodarone mainly induces intracellular phospholipid accumulation (phospholipidosis) in AEC2s and alveolar macrophages.

  • Methotrexate significantly promotes the epithelial-mesenchymal transition (EMT) process of AEC2s.

  • Nitrogen mustard facilitates the activation and recruitment of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

AEC:

Alveolar epithelial cell

AD:

Amiodarone

ALP:

Alkaline phosphatase

ANXA2:

Annexin A2

ATF:

Activating transcription factor

ATS:

American Thoracic Society

BALF:

Bronchoalveolar lavage fluid

bFGF:

Basic fibroblast growth factor

BLM:

Bleomycin

CAT:

Catalase

CHOP:

C/EBP homologous protein

CP:

Cyclophosphamide

CTD:

Comparative Toxicogenomics Database

DHFR:

Dihydrofolate reductase

DNA:

Deoxyribonucleic acid

DPPC:

Dipalmitoyl phosphatidylcholine

ECM:

Extracellular matrix

EMT:

Epithelial-mesenchymal transition

ER:

Endoplasmic reticulum

FA:

Folic acid

FN:

Fibronectin

FVC:

Forced vital capacity

GAG:

Glycosaminoglycan

GGO:

Ground glass opacity

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GSSG:

Glutathione disulfide

GST:

Glutathione S-transferase

HMGB:

High mobility group box protein

HRCT:

High-resolution computed tomography

HSP:

Heat shock protein

IL:

Interleukin

IPF:

Idiopathic pulmonary fibrosis

I.T.:

Intratracheal instillation

LAMP1:

Lysosomal-associated membrane protein 1

LBPA:

Lysobisphosphatidic acid

LC3:

Microtubule-associated protein1 light chain 3

LDH:

Lactate dehydrogenase

LPO:

Lipid peroxidase

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MIP:

Macrophage inflammatory protein

MPR300:

Mannose 6-phosphate/IGF-II receptor

mTOR:

Mammalian target of rapamycin

MTX:

Methotrexate

NF-кB:

Nuclear factor kappa-light-chain-enhancer of activated B-cells

O.A.:

Oropharyngeal administration

PAI:

Plasminogen activator inhibitor

PDGF:

Platelet-derived growth factor

PF:

Pulmonary fibrosis

PL:

Phospholipase

PLDsis:

Phospholipidosis

Rab7:

RAS-related GTP binding protein 7

RFC:

Reduced folate carrier

ROS:

Reactive oxygen species

α-SMA:

Alpha-smooth muscle actin

SOD:

Superoxide dismutase

SP:

Surfactant protein

TAK:

TGF-beta activated kinase

TFEB:

Transcription factor EB

TGF-β:

Transforming growth factor beta

THF:

Tetrahydrofolic acid

TNF-α:

Tumor necrosis factor alpha

V-ATPase:

Vacuolar ATPase

YWHA:

Tyrosine 3/tryptophan 5 monooxygenase activation protein

References

  • Abidi A, Bahri S, Ben Khamsa S, Legrand A. A comparative study of intratracheal and aerosolization instillations of bleomycin inducing experimental lung fibrosis in rat. Toxicol Mech Methods. 2019;29:75–85.

    Article  CAS  PubMed  Google Scholar 

  • Ackermann M, Kim YO, Wagner WL, Schuppan D, Valenzuela CD, Mentzer SJ, Kreuz S, Stiller D, Wollin L, Konerding MA. Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis. 2017;20:359–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hamdany MZ, Al-Hubaity AY. The structural changes of the rat’s lung induced by intraperitoneal injection of 5-fluorouracil. J Pak Med Assoc. 2014;64:734–8.

    PubMed  Google Scholar 

  • Almudever P, Milara J, De Diego A, Serrano-Mollar A, Xaubet A, Perez-Vizcaino F, Cogolludo A, Cortijo J. Role of tetrahydrobiopterin in pulmonary vascular remodelling associated with pulmonary fibrosis. Thorax. 2013;68:938–48.

    Article  PubMed  Google Scholar 

  • Arpag H, Gul M, Aydemir Y, Atilla N, Yigitcan B, Cakir T, Polat C, Thornehirli O, Sayan M. Protective effects of alpha-lipoic acid on methotrexate-induced oxidative lung injury in rats. J Invest Surg. 2018;31:107–13.

    Article  PubMed  Google Scholar 

  • B Bm, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease. Am J Respir Cell Mol Biol. 2013;49:167–79.

    Article  Google Scholar 

  • Babin AL, Cannet C, Gerard C, Saint-Mezard P, Page CP, Sparrer H, Matsuguchi T, Beckmann N. Bleomycin-induced lung injury in mice investigated by MRI: model assessment for target analysis. Magn Reson Med. 2012;67:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Baglole CJ, Maggirwar SB, Gasiewicz TA, Thatcher TH, Phipps RP, Sime PJ. The aryl hydrocarbon receptor attenuates tobacco smoke-induced cyclooxygenase-2 and prostaglandin production in lung fibroblasts through regulation of the NF-kappaB family member RelB. J Biol Chem. 2008;283:28944–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baritussio A, Marzini S, Agostini M, Alberti A, Cimenti C, Bruttomesso D, Manzato E, Quaglino D, Pettenazzo A. Amiodarone inhibits lung degradation of SP-A and perturbs the distribution of lysosomal enzymes. Am J Physiol Lung Cell Mol Physiol. 2001;281:L1189-1199.

    Article  CAS  PubMed  Google Scholar 

  • Bhagat R, Sporn TA, Long GD, Folz RJ. Amiodarone and cyclophosphamide: potential for enhanced lung toxicity. Bone Marrow Transplant. 2001;27:1109–11.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee A, Basu A, Biswas J, Bhattacharya S. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice. Mol Cell Biochem. 2015;405:243–56.

    Article  CAS  PubMed  Google Scholar 

  • Birkelbach B, Lutz D, Ruppert C, Henneke I, Lopez-Rodriguez E, Gunther A, Ochs M, Mahavadi P, Knudsen L. Linking progression of fibrotic lung remodeling and ultrastructural alterations of alveolar epithelial type II cells in the amiodarone mouse model. Am J Physiol Lung Cell Mol Physiol. 2015;309:L63-75.

    Article  CAS  PubMed  Google Scholar 

  • Biya J, Stoclin A, Dury S, Le Pavec J, Mir O, Lazarovici J, Fermé C, Annereau M, Ekpe K, Massard C, Michot J-M. Consortium de détection et prise en charge des atteintes pulmonaires induites par la bléomycine. Bull Cancer. 2016;103:651–61.

    Article  PubMed  Google Scholar 

  • Blake TL, Reasor MJ. Pulmonary responses to amiodarone in hamsters: comparison of intratracheal and oral administrations. Toxicol Appl Pharmacol. 1995;131:325–31.

    Article  CAS  PubMed  Google Scholar 

  • Bolt MW, Card JW, Racz WJ, Brien JF, Massey TE. Disruption of mitochondrial function and cellular ATP levels by amiodarone and N-desethylamiodarone in initiation of amiodarone-induced pulmonary cytotoxicity. J Pharmacol Exp Ther. 2001;298:1280–9.

    CAS  PubMed  Google Scholar 

  • Brien JF, Jimmo S, Brennan FJ, Ford SE, Armstrong PW. Distribution of amiodarone and its metabolite, desethylamiodarone, in human tissues. Can J Physiol Pharmacol. 1987;65:360–4.

    Article  CAS  PubMed  Google Scholar 

  • Buendia JA, Justinico Castro JA, Vela LJT, Sinisterra D, Sanchez Villamil JP, Zuluaga Salazar AF. Comparison of four pharmacological strategies aimed to prevent the lung inflammation and paraquat-induced alveolar damage. BMC Res Notes. 2019;12:584.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cantor JO, Osman M, Cerreta JM, Suarez R, Mandl I, Turino GM. Amiodarone-induced pulmonary fibrosis in hamsters. Exp Lung Res. 1984;6:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Card JW, Leeder RG, Racz WJ, Brien JF, Bray TM, Massey TE. Effects of dietary vitamin E supplementation on pulmonary morphology and collagen deposition in amiodarone- and vehicle-treated hamsters. Toxicology. 1999;133:75–84.

    Article  CAS  PubMed  Google Scholar 

  • Chan AK, Choo BA, Glaholm J. Pulmonary toxicity with oxaliplatin and capecitabine/5-Fluorouracil chemotherapy: a case report and review of the literature. Onkologie. 2011;34:443–6.

    Article  PubMed  Google Scholar 

  • Chatelain P, Ferreira J, Laruel R, Ruysschaert JM. Amiodarone induced modifications of the phospholipid physical state. A fluorescence polarization study. Biochem Pharmacol. 1986;35:3007–13.

    Article  CAS  PubMed  Google Scholar 

  • Chen YL, Zhang X, Bai J, Gai L, Ye XL, Zhang L, Xu Q, Zhang YX, Xu L, Li HP, Ding X. Sorafenib ameliorates bleomycin-induced pulmonary fibrosis: potential roles in the inhibition of epithelial-mesenchymal transition and fibroblast activation. Cell Death Dis. 2013;4:e665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung WH, Bennett BM, Racz WJ, Brien JF, Massey TE. Induction of c-jun and TGF-beta 1 in Fischer 344 rats during amiodarone-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2001;281:L1180-1188.

    Article  CAS  PubMed  Google Scholar 

  • Cinar R, Gochuico BR, Iyer MR, Jourdan T, Yokoyama T, Park JK, Coffey NJ, Pri-Chen H, Szanda G, Liu Z, Mackie K, Gahl WA and Kunos G. Cannabinoid CB1 receptor overactivity contributes to the pathogenesis of idiopathic pulmonary fibrosis. JCI Insight. 2017;2.

  • Claussen CA, Long EC. Nucleic acid recognition by metal complexes of bleomycin. Chem Rev. 1999;99:2797–816.

    Article  CAS  PubMed  Google Scholar 

  • De Langhe E, Vande Velde G, Hostens J, Himmelreich U, Nemery B, Luyten FP, Vanoirbeek J, Lories RJ. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PLoS One. 2012;7:e43123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Latta V, Cecchettini A, Del Ry S, Morales MA. Bleomycin in the setting of lung fibrosis induction: from biological mechanisms to counteractions. Pharmacol Res. 2015;97:122–30.

    Article  CAS  PubMed  Google Scholar 

  • Dharmarajan K, Wang Y, Lin Z, Normand ST, Ross JS, Horwitz LI, Desai NR, Suter LG, Drye EE, Bernheim SM, Krumholz HM. Association of changing hospital readmission rates with mortality rates after hospital discharge. JAMA. 2017;318:270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Egger C, Cannet C, Gerard C, Jarman E, Jarai G, Feige A, Suply T, Micard A, Dunbar A, Tigani B, Beckmann N. Administration of bleomycin via the oropharyngeal aspiration route leads to sustained lung fibrosis in mice and rats as quantified by UTE-MRI and histology. PLoS One. 2013;8:e63432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Mohandes EM, Moustafa AM, Khalaf HA, Hassan YF. The role of mast cells and macrophages in amiodarone induced pulmonary fibrosis and the possible attenuating role of atorvastatin. Biotech Histochem. 2017;92:467–80.

    Article  CAS  PubMed  Google Scholar 

  • Fehrenbach H. Alveolar epithelial type II cell: defender of the alveolus revisited. Respir Res. 2001;2:33–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Blanco JA, Aguilera M, Domenech A, Tarrason G, Prats N, Miralpeix M, De Alba J. Enhanced cough reflex in a model of bleomycin-induced lung fibrosis in guinea pigs. Clin Sci (lond). 2015;129:1001–10.

    Article  CAS  Google Scholar 

  • Fikry EM, Safar MM, Hasan WA, Fawzy HM, El-Denshary EE. Bone marrow and adipose-derived mesenchymal stem cells alleviate methotrexate-induced pulmonary fibrosis in rat: comparison with dexamethasone. J Biochem Mol Toxicol. 2015;29:321–9.

    Article  CAS  PubMed  Google Scholar 

  • Francois A, Gombault A, Villeret B, Alsaleh G, Fanny M, Gasse P, Adam SM, Crestani B, Sibilia J, Schneider P, Bahram S, Quesniaux V, Ryffel B, Wachsmann D, Gottenberg JE, Couillin I. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis. J Autoimmun. 2015;56:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Gribbin J, Hubbard RB, Le Jeune I, Smith CJ, West J, Tata LJ. Incidence and mortality of idiopathic pulmonary fibrosis and sarcoidosis in the UK. Thorax. 2006;61:980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison JH Jr, Lazo JS. High dose continuous infusion of bleomycin in mice: a new model for drug-induced pulmonary fibrosis. J Pharmacol Exp Ther. 1987;243:1185–94.

    CAS  PubMed  Google Scholar 

  • He Y, Lan Y, Liu Y, Yu H, Han Z, Li X and Zhang L. Pingyangmycin and bleomycin share the same cytotoxicity pathway. Molecules. 2016;21.

  • Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal VJ. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Science Translational Medicine. 2014;6:231ra247.

    Article  Google Scholar 

  • Helal GK, Helal OK. Metallothionein attenuates carmustine-induced oxidative stress and protects against pulmonary fibrosis in rats. Arch Toxicol. 2009;83:87–94.

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Hirayama M, Hirota Y, Asa E, Seki J, Tanaka Y. Drug-induced phospholipidosis is caused by blockade of mannose 6-phosphate receptor-mediated targeting of lysosomal enzymes. Biochem Biophys Res Commun. 2008;377:268–74.

    Article  CAS  PubMed  Google Scholar 

  • Ishii H, Mukae H, Kakugawa T, Iwashita T, Kaida H, Fujii T, Hayashi T, Kadota J, Kohno S. Increased expression of collagen-binding heat shock protein 47 in murine bleomycin-induced pneumopathy. Am J Physiol Lung Cell Mol Physiol. 2003;285:L957-963.

    Article  CAS  PubMed  Google Scholar 

  • Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol. 2002;83:111–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Konigshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES, Cell ATSAoR and molecular B,. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol. 2017;56:667–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin GY, Bok SM, Han YM, Chung MJ, Yoon KH, Kim SR, Lee YC. Effectiveness of rosiglitazone on bleomycin-induced lung fibrosis: assessed by micro-computed tomography and pathologic scores. Eur J Radiol. 2012;81:1901–6.

    Article  PubMed  Google Scholar 

  • Kalemci S, Akpinar O, Dere Y, Sarihan A, Zeybek A, Tanriverdi O. Efficacy of clarithromycin as a protective agent in the methotrexate-induced pulmonary fibrosis model. Kardiochir Torakochirurgia Pol. 2018;15:209–12.

    PubMed  PubMed Central  Google Scholar 

  • Kalemci S, Dirican N, Cetin ES, Sözen H, Uner AG, Yaylali A, Aksun S, Karacam V, Ulger E, Sütcü R, Dirican A. The efficacy of minocycline against methotrexate-induced pulmonary fibrosis in mice. Eur Rev Med Pharmacol Sci. 2013;17:3334–40.

    CAS  PubMed  Google Scholar 

  • Kawami M, Harabayashi R, Harada R, Yamagami Y, Yumoto R, Takano M. Folic acid prevents methotrexate-induced epithelial-mesenchymal transition via suppression of secreted factors from the human alveolar epithelial cell line A549. Biochem Biophys Res Commun. 2018;497:457–63.

    Article  CAS  PubMed  Google Scholar 

  • Kawami M, Harabayashi R, Miyamoto M, Harada R, Yumoto R, Takano M. Methotrexate-induced epithelial-mesenchymal transition in the alveolar epithelial cell line A549. Lung. 2016;194:923–30.

    Article  CAS  PubMed  Google Scholar 

  • Kawami M, Harada R, Ojima T, Yamagami Y, Yumoto R, Takano M. Association of cell cycle arrest with anticancer drug-induced epithelial-mesenchymal transition in alveolar epithelial cells. Toxicology. 2019;424:152231.

    Article  CAS  PubMed  Google Scholar 

  • Kawami M, Honda N, Hara T, Yumoto R, Takano M. Investigation on inhibitory effect of folic acid on methotrexate-induced epithelial-mesenchymal transition focusing on dihydrofolate reductase. Drug Metab Pharmacokinet. 2019b;34:396–9.

    Article  CAS  PubMed  Google Scholar 

  • Kawami M, Honda N, Miyamoto M, Yumoto R, Takano M. Reduced folate carrier-mediated methotrexate transport in human distal lung epithelial NCl-H441 cells. J Pharm Pharmacol. 2019c;71:167–75.

    Article  CAS  PubMed  Google Scholar 

  • Kim TH, Lee YH, Kim KH, Lee SH, Cha JY, Shin EK, Jung S, Jang AS, Park SW, Uh ST, Kim YH, Park JS, Sin HG, Youm W, Koh ES, Cho SY, Paik YK, Rhim TY, Park CS. Role of lung apolipoprotein A-I in idiopathic pulmonary fibrosis: antiinflammatory and antifibrotic effect on experimental lung injury and fibrosis. Am J Respir Crit Care Med. 2010;182:633–42.

    Article  CAS  PubMed  Google Scholar 

  • Kim YJ, Song M, Ryu JC. Inflammation in methotrexate-induced pulmonary toxicity occurs via the p38 MAPK pathway. Toxicology. 2009;256:183–90.

    Article  CAS  PubMed  Google Scholar 

  • King TE Jr, Tooze JA, Schwarz MI, Brown KR, Cherniack RM. Predicting survival in idiopathic pulmonary fibrosis: scoring system and survival model. Am J Respir Crit Care Med. 2001;164:1171–81.

    Article  PubMed  Google Scholar 

  • Kolb P, Upagupta C, Vierhout M, Ayaub E, Bellaye PS, Gauldie J, Shimbori C, Inman M, Ask K, Kolb MRJ. The importance of interventional timing in the bleomycin model of pulmonary fibrosis. Eur Respir J. 2020;55.

  • Kurt A, Tumkaya L, Turut H, Cure MC, Cure E, Kalkan Y, Sehitoglu I, Acipayam A. Protective effects of infliximab on lung injury induced by methotrexate. Archivos De Bronconeumología (english Edition). 2015;51:551–7.

    Article  Google Scholar 

  • Leeder RG, Brien JF, Massey TE. Investigation of the role of oxidative stress in amiodarone-induced pulmonary toxicity in the hamster. Can J Physiol Pharmacol. 1994a;72:613–21.

    Article  CAS  PubMed  Google Scholar 

  • Leeder RG, Evans CD, Brien JF, Massey TE. Resistance of the hamster to amiodarone-induced pulmonary toxicity following repeated intraperitoneal administration. Toxicol Lett. 1994b;74:51–9.

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Wang K, Li X, Li Y, Feng X, Zhou J, Zhang Z, Huang C, Zhang T. Cell-surface translocation of annexin A2 contributes to bleomycin-induced pulmonary fibrosis by mediating inflammatory response in mice. Clin Sci (lond). 2019;133:789–804.

    Article  CAS  Google Scholar 

  • Lekgabe ED, Royce SG, Hewitson TD, Tang ML, Zhao C, Moore XL, Tregear GW, Bathgate RA, Du XJ, Samuel CS. The effects of relaxin and estrogen deficiency on collagen deposition and hypertrophy of nonreproductive organs. Endocrinology. 2006;147:5575–83.

    Article  CAS  PubMed  Google Scholar 

  • Li B, Huang X, Liu Z, Xu X, Xiao H, Zhang X, Dai H, Wang C. Ouabain ameliorates bleomycin induced pulmonary fibrosis by inhibiting proliferation and promoting apoptosis of lung fibroblasts. Am J Transl Res. 2018;10:2967–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Duitman J, Daalhuisen J, ten Brink M, von der Thüsen J, van der Poll T, Borensztajn K, Spek CA. Targeting protease activated receptor-1 with P1pal-12 limits bleomycin-induced pulmonary fibrosis. Thorax. 2014;69:152–60.

    Article  PubMed  Google Scholar 

  • Liu X, Khadtare N, Patel H, Stephani R, Cantor J. Time-dependent effects of HJP272, an endothelin receptor antagonist, in bleomycin-induced pulmonary fibrosis. Pulm Pharmacol Ther. 2017a;45:164–9.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Khadtare N, Patel H, Stephani R, Cantor J. Transient blockade of endothelin-1 mitigates amiodarone-induced pulmonary fibrosis. Lung. 2018;196:321–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Ma S, Turino G, Cantor J. The pattern of elastic fiber breakdown in bleomycin-induced pulmonary fibrosis may reflect microarchitectural changes. Lung. 2017b;195:93–9.

    Article  CAS  PubMed  Google Scholar 

  • Mahavadi P, Henneke I, Ruppert C, Knudsen L, Venkatesan S, Liebisch G, Chambers RC, Ochs M, Schmitz G, Vancheri C, Seeger W, Korfei M, Guenther A. Altered surfactant homeostasis and alveolar epithelial cell stress in amiodarone-induced lung fibrosis. Toxicol Sci. 2014;142:285–97.

    Article  CAS  PubMed  Google Scholar 

  • Mahavadi P, Knudsen L, Venkatesan S, Henneke I, Hegermann J, Wrede C, Ochs M, Ahuja S, Chillappagari S, Ruppert C, Seeger W, Korfei M, Guenther A. Regulation of macroautophagy in amiodarone-induced pulmonary fibrosis. J Pathol Clin Res. 2015;1:252–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik SW, Myers JL, DeRemee RA, Specks U. Lung toxicity associated with cyclophosphamide use. Two distinct patterns. Am J Respir Crit Care Med. 1996;154:1851–6.

    Article  CAS  PubMed  Google Scholar 

  • Matute-Bello G, Frevert CW, Martin TR. Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2008;295:L379-399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazue G, Vic P, Gouy D, Remandet B, Lacheretz F, Berthe J, Barchewitz G, Gagnol JP. Recovery from amiodarone-induced lipidosis in laboratory animals: a toxicological study. Fundam Appl Toxicol. 1984;4:992–9.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed DI, Khairy E, Tawfek SS, Habib EK, Fetouh MA. Coenzyme Q10 attenuates lung and liver fibrosis via modulation of autophagy in methotrexate treated rat. Biomed Pharmacother. 2019;109:892–901.

    Article  CAS  PubMed  Google Scholar 

  • Morissette G, Ammoury A, Rusu D, Marguery MC, Lodge R, Poubelle PE, Marceau F. Intracellular sequestration of amiodarone: role of vacuolar ATPase and macroautophagic transition of the resulting vacuolar cytopathology. Br J Pharmacol. 2009;157:1531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouratis MA, Aidinis V. Modeling pulmonary fibrosis with bleomycin. Curr Opin Pulm Med. 2011;17:355–61.

    Article  CAS  PubMed  Google Scholar 

  • Mundt P, Mochmann HC, Ebhardt H, Zeitz M, Duchmann R, Pauschinger M. Pulmonary fibrosis after chemotherapy with oxaliplatin and 5-fluorouracil for colorectal cancer. Oncology. 2007;73:270–2.

    Article  CAS  PubMed  Google Scholar 

  • Nagao S, Taguchi K, Sakai H, Tanaka R, Horinouchi H, Watanabe H, Kobayashi K, Otagiri M, Maruyama T. Carbon monoxide-bound hemoglobin-vesicles for the treatment of bleomycin-induced pulmonary fibrosis. Biomaterials. 2014;35:6553–62.

    Article  CAS  PubMed  Google Scholar 

  • Nagatani Y, Nitta N, Otani H, Mukaisho K, Sonoda A, Nitta-Seko A, Takahashi M, Murata K. Quantitative measurement of bleomycin-induced lung fibrosis in rabbits using sequential in vivo regional analysis and high-resolution computed tomography: correlation with pathologic findings. Acad Radiol. 2011;18:672–81.

    Article  PubMed  Google Scholar 

  • Najjar TA. Disposition of amiodarone in rats after single and multiple intraperitoneal doses. Eur J Drug Metab Pharmacokinet. 2001;26:65–9.

    Article  CAS  PubMed  Google Scholar 

  • Ni W, Yang D, Mei H, Zhao J, Liang B, Bai N, Chai D, Cui J, Wang R and Liu Y. Penetration of ciprofloxacin and amikacin into the alveolar epithelial lining fluid of rats with pulmonary fibrosis. Antimicrob Agents Chemother. 2017;61.

  • Ning W, Jiang D, Noble PW, Yin Z, Liu X, Dai H, Liang J, Xie T, Zheng X, Yang X, Li X, Liu X, Dong S, Li X, Fang Y, Yan X, Li X, Li L, Geng Y, Dong Y. Blocking follistatin-like 1 attenuates bleomycin-induced pulmonary fibrosis in mice. J Exp Med. 2015;212:235–52.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimoto T, Mlakar L, Takihara T, Feghali-Bostwick C. An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model. Int Immunopharmacol. 2015;28:1102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu CH, Wang Y, Liu JD, Wang JL, Xiao JH. Protective effects of neferine on amiodarone-induced pulmonary fibrosis in mice. Eur J Pharmacol. 2013;714:112–9.

    Article  CAS  PubMed  Google Scholar 

  • Nonoyama T, Fukuda R. Drug-induced phospholipidosis-pathological aspects and its prediction. J Toxicol Pathol. 2008;21:9–24.

    Article  CAS  Google Scholar 

  • Ohbayashi M, Kubota S, Kawase A, Kohyama N, Kobayashi Y, Yamamoto T. Involvement of epithelial-mesenchymal transition in methotrexate-induced pulmonary fibrosis. J Toxicol Sci. 2014;39:319–30.

    Article  CAS  PubMed  Google Scholar 

  • Ohbayashi M, Suzuki M, Yashiro Y, Fukuwaka S, Yasuda M, Kohyama N, Kobayashi Y, Yamamoto T. Induction of pulmonary fibrosis by methotrexate treatment in mice lung in vivo and in vitro. J Toxicol Sci. 2010;35:653–61.

    Article  CAS  PubMed  Google Scholar 

  • Oku H, Shimizu T, Kawabata T, Nagira M, Hikita I, Ueyama A, Matsushima S, Torii M, Arimura A. Antifibrotic action of pirfenidone and prednisolone: different effects on pulmonary cytokines and growth factors in bleomycin-induced murine pulmonary fibrosis. Eur J Pharmacol. 2008;590:400–8.

    Article  CAS  PubMed  Google Scholar 

  • Olmeda B, Martinez-Calle M, Perez-Gil J. Pulmonary surfactant metabolism in the alveolar airspace: biogenesis, extracellular conversions, recycling. Ann Anat. 2017;209:78–92.

    Article  PubMed  Google Scholar 

  • Organ L, Bacci B, Koumoundouros E, Barcham G, Kimpton W, Nowell CJ, Samuel C, Snibson K. A novel segmental challenge model for bleomycin-induced pulmonary fibrosis in sheep. Exp Lung Res. 2015a;41:115–34.

    Article  CAS  PubMed  Google Scholar 

  • Organ L, Bacci B, Koumoundouros E, Barcham G, Milne M, Kimpton W, Samuel C, Snibson K. Structural and functional correlations in a large animal model of bleomycin-induced pulmonary fibrosis. BMC Pulm Med. 2015b;15:81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JK, Coffey NJ, Bodine SP, Zawatsky CN, Jay L, Gahl WA, Kunos G, Gochuico BR, Malicdan MCV, Cinar R. Bleomycin induces drug efflux in lungs. A pitfall for pharmacological studies of pulmonary fibrosis. Am J Respir Cell Mol Biol. 2020;62:178–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel A, Hoffman E, Ball D, Klapwijk J, Steven RT, Dexter A, Bunch J, Baker D, Murnane D, Hutter V, Page C, Dailey LA and Forbes B. Comparison of oral, intranasal and aerosol administration of amiodarone in rats as a model of pulmonary phospholipidosis. Pharmaceutics. 2019;11.

  • Peng R, Sridhar S, Tyagi G, Phillips JE, Garrido R, Harris P, Burns L, Renteria L, Woods J, Chen L, Allard J, Ravindran P, Bitter H, Liang Z, Hogaboam CM, Kitson C, Budd DC, Fine JS, Bauer CM, Stevenson CS. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for “active” disease. PLoS One. 2013;8:e59348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JE, Peng R, Burns L, Harris P, Garrido R, Tyagi G, Fine JS, Stevenson CS. Bleomycin induced lung fibrosis increases work of breathing in the mouse. Pulm Pharmacol Ther. 2012;25:281–5.

    Article  CAS  PubMed  Google Scholar 

  • Piccoli E, Nadai M, Caretta CM, Bergonzini V, Del Vecchio C, Ha HR, Bigler L, Dal Zoppo D, Faggin E, Pettenazzo A, Orlando R, Salata C, Calistri A, Palu G, Baritussio A. Amiodarone impairs trafficking through late endosomes inducing a Niemann-Pick C-like phenotype. Biochem Pharmacol. 2011;82:1234–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piret J, Schanck A, Delfosse S, Van Bambeke F, Kishore BK, Tulkens PM, Mingeot-Leclercq MP. Modulation of the in vitro activity of lysosomal phospholipase A1 by membrane lipids. Chem Phys Lipids. 2005;133:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Povirk LF, Han YH, Steighner RJ. Structure of bleomycin-induced DNA double-strand breaks: predominance of blunt ends and single-base 5′ extensions. Biochemistry. 1989;28:5808–14.

    Article  CAS  PubMed  Google Scholar 

  • Pron G, Mahrour N, Orlowski S, Tounekti O, Poddevin B, Belehradek J Jr, Mir LM. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism. Biochem Pharmacol. 1999;57:45–56.

    Article  CAS  PubMed  Google Scholar 

  • Punithavathi D, Venkatesan N, Babu M. Protective effects of curcumin against amiodarone-induced pulmonary fibrosis in rats. Br J Pharmacol. 2003;139:1342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghu G, Collard HR, Egan JJ, Martinez FJ, Behr J, Brown KK, Colby TV, Cordier JF, Flaherty KR, Lasky JA, Lynch DA, Ryu JH, Swigris JJ, Wells AU, Ancochea J, Bouros D, Carvalho C, Costabel U, Ebina M, Hansell DM, Johkoh T, Kim DS, King TE Jr, Kondoh Y, Myers J, Muller NL, Nicholson AG, Richeldi L, Selman M, Dudden RF, Griss BS, Protzko SL, Schunemann HJ, Fibrosis AEJACoIP,. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183:788–824.

    Article  PubMed  PubMed Central  Google Scholar 

  • Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, Brozek JL, Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL, Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schunemann HJ, American Thoracic S, European Respiratory s, Japanese Respiratory S and Latin American Thoracic A. An official ATS/ERS/JRS/ALAT Clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. American journal of respiratory and critical care medicine. 2015;192:e3-19.

    Article  PubMed  Google Scholar 

  • Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK, Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Knight SL, Mansour G, Nicholson AG, Pipavath SNJ, Buendia-Roldan I, Selman M, Travis WD, Walsh S, Wilson KC, American Thoracic Society ERSJRS and Latin American Thoracic S. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198:e44–68.

  • Rangarajan S, Bone NB, Zmijewska AA, Jiang S, Park DW, Bernard K, Locy ML, Ravi S, Deshane J, Mannon RB, Abraham E, Darley-Usmar V, Thannickal VJ, Zmijewski JW. Metformin reverses established lung fibrosis in a bleomycin model. Nat Med. 2018;24:1121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redente EF, Jacobsen KM, Solomon JJ, Lara AR, Faubel S, Keith RC, Henson PM, Downey GP, Riches DW. Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2011;301:L510-518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhart PG, Gairola CG. Amiodarone-induced pulmonary toxicity in Fischer rats: release of tumor necrosis factor alpha and transforming growth factor beta by pulmonary alveolar macrophages. J Toxicol Environ Health. 1997;52:353–65.

    Article  CAS  PubMed  Google Scholar 

  • Reinhart PG, Lai YL, Gairola CG. Amiodarone-induced pulmonary fibrosis in Fischer 344 rats. Toxicology. 1996;110:95–101.

    Article  CAS  PubMed  Google Scholar 

  • Roubille C, Haraoui B. Interstitial lung diseases induced or exacerbated by DMARDS and biologic agents in rheumatoid arthritis: a systematic literature review. Semin Arthritis Rheum. 2014;43:613–26.

    Article  CAS  PubMed  Google Scholar 

  • Saba KS, Parvez S, Chaudhari B, Ahmad F, Anjum S, Raisuddin S. Ellagic acid attenuates bleomycin and cyclophosphamide-induced pulmonary toxicity in Wistar rats. Food Chem Toxicol. 2013;58:210–9.

    Article  CAS  PubMed  Google Scholar 

  • Sarma JS, Pei H, Venkataraman K. Role of oxidative stress in amiodarone-induced toxicity. J Cardiovasc Pharmacol Ther. 1997;2:53–60.

    Article  CAS  PubMed  Google Scholar 

  • Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA, Schwarzmayr T, Strom TM, Eickelberg O and Mann M. Time‐ and compartment‐resolved proteome profiling of the extracellular niche in lung injury and repair. Mol Syst Biol. 2015;11.

  • Schrier DJ, Kunkel RG, Phan SH. The role of strain variation in murine bleomycin-induced pulmonary fibrosis. Am Rev Respir Dis. 1983;127:63–6.

    Article  CAS  PubMed  Google Scholar 

  • Schroll S, Lange TJ, Arzt M, Sebah D, Nowrotek A, Lehmann H, Wensel R, Pfeifer M, Blumberg FC. Effects of simvastatin on pulmonary fibrosis, pulmonary hypertension and exercise capacity in bleomycin-treated rats. Acta Physiol (oxf). 2013;208:191–201.

    Article  CAS  Google Scholar 

  • Scotton CJ, Hayes B, Alexander R, Datta A, Forty EJ, Mercer PF, Blanchard A, Chambers RC. Ex vivo micro-computed tomography analysis of bleomycin-induced lung fibrosis for preclinical drug evaluation. Eur Respir J. 2013;42:1633–45.

    Article  CAS  PubMed  Google Scholar 

  • Scotton CJ, Krupiczojc MA, Konigshoff M, Mercer PF, Lee YC, Kaminski N, Morser J, Post JM, Maher TM, Nicholson AG, Moffatt JD, Laurent GJ, Derian CK, Eickelberg O, Chambers RC. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J Clin Invest. 2009;119:2550–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharaf El-Din AA, Abd Allah OM. Impact of olmesartan medoxomil on amiodarone-induced pulmonary toxicity in rats: focus on transforming growth factor-ss1. Basic Clin Pharmacol Toxicol. 2016;119:58–67.

    Article  CAS  PubMed  Google Scholar 

  • Shayman JA, Kelly R, Kollmeyer J, He Y, Abe A. Group XV phospholipase A(2), a lysosomal phospholipase A(2). Prog Lipid Res. 2011;50:1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skorupski KA, Durham AC, Duda L, Sørenmo KU. Pulmonary fibrosis after high cumulative dose nitrosourea chemotherapy in a cat. Vet Comp Oncol. 2008;6:120–5.

    Article  CAS  PubMed  Google Scholar 

  • Smith AC, Boyd MR. Preferential effects of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) on pulmonary glutathione reductase and glutathione/glutathione disulfide ratios: possible implications for lung toxicity. J Pharmacol Exp Ther. 1984;229:658–63.

    CAS  PubMed  Google Scholar 

  • Sonoda A, Nitta N, Tsuchiya K, Otani H, Watanabe S, Mukaisho K, Tomozawa Y, Nagatani Y, Ohta S, Takahashi M, Murata K. Asialoerythropoietin ameliorates bleomycin-induced acute lung injury in rabbits by reducing inflammation. Exp Ther Med. 2014;8:1443–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spek A and Duitman J. CCAAT/enhancer binding protein delta (C/EBPδ) deficiency does not affect bleomycin-induced pulmonary fibrosis. J Clin Transl Res. 2018

  • Sundarakrishnan A, Chen Y, Black LD, Aldridge BB, Kaplan DL. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev. 2018;129:78–94.

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Yamamoto C, Yamaguchi K, Kawami M, Yumoto R. Analysis of TGF-beta1- and drug-induced epithelial-mesenchymal transition in cultured alveolar epithelial cell line RLE/Abca3. Drug Metab Pharmacokinet. 2015;30:111–8.

    Article  CAS  PubMed  Google Scholar 

  • Takemasa A, Ishii Y, Fukuda T. A neutrophil elastase inhibitor prevents bleomycin-induced pulmonary fibrosis in mice. Eur Respir J. 2012;40:1475–82.

    Article  CAS  PubMed  Google Scholar 

  • Taylor MD, Van Dyke K, Bowman LL, Miles PR, Hubbs AF, Mason RJ, Shannon K, Reasor MJ. A characterization of amiodarone-induced pulmonary toxicity in F344 rats and identification of surfactant protein-D as a potential biomarker for the development of the toxicity. Toxicol Appl Pharmacol. 2000;167:182–90.

    Article  CAS  PubMed  Google Scholar 

  • Vande Velde G, Poelmans J, De Langhe E, Hillen A, Vanoirbeek J, Himmelreich U, Lories RJ. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis Model Mech. 2016;9:91–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vassallo P, Trohman RG. Prescribing amiodarone: an evidence-based review of clinical indications. JAMA. 2007;298:1312–22.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan N, Punithavathi D, Chandrakasan G. Biochemical and connective tissue changes in cyclophosphamide-induced lung fibrosis in rats. Biochem Pharmacol. 1998;56:895–904.

    Article  CAS  PubMed  Google Scholar 

  • Waldo AL. Prescribing amiodarone: an evidence-based review of clinical indications. Yearbook of Cardiology. 2008;2008:488–9.

    Article  Google Scholar 

  • Wang K, Zhang T, Lei Y, Li X, Jiang J, Lan J, Liu Y, Chen H, Gao W, Xie N, Chen Q, Zhu X, Liu X, Xie K, Peng Y, Nice EC, Wu M, Huang C, Wei Y. Identification of ANXA2 (annexin A2) as a specific bleomycin target to induce pulmonary fibrosis by impeding TFEB-mediated autophagic flux. Autophagy. 2018;14:269–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Nitta N, Sonoda A, Nitta-Seko A, Ohta S, Tsuchiya K, Otani H, Tomozawa Y, Nagatani Y, Mukaisho K, Takahashi M, Murata K. Inhibition of fibrosis and inflammation by triple therapy with pirfenidone, edaravone and erythropoietin in rabbits with drug-induced lung injury: comparison of CT imaging and pathological findings. Exp Ther Med. 2013;6:1096–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiertz IA, van Moorsel CHM, Vorselaars ADM, Quanjel MJR and Grutters JC. Cyclophosphamide in steroid refractory unclassifiable idiopathic interstitial pneumonia and interstitial pneumonia with autoimmune features (IPAF). Eur Respir J. 2018;51.

  • Williamson JD, Sadofsky LR, Hart SP. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis. Exp Lung Res. 2015;41:57–73.

    Article  CAS  PubMed  Google Scholar 

  • Yamagami Y, Kawami M, Ojima T, Futatsugi S, Yumoto R, Takano M. Role of plasminogen activator inhibitor-1 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Biochem Biophys Res Commun. 2020;525:543–8.

    Article  CAS  PubMed  Google Scholar 

  • Zaafan MA, Zaki HF, El-Brairy AI, Kenawy SA. Pyrrolidinedithiocarbamate attenuates bleomycin-induced pulmonary fibrosis in rats: modulation of oxidative stress, fibrosis, and inflammatory parameters. Exp Lung Res. 2016;42:408–16.

    Article  CAS  PubMed  Google Scholar 

  • Zaeemzadeh N, Hemmati A, Arzi A, Jalali M, Rashidi I. Protective effect of caffeic acid phenethyl ester (CAPE) on amiodarone-induced pulmonary fibrosisin rat. Iran J Pharm Res. 2011;10:321–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cui R, Feng Y, Gao W, Bi J, Li Z, Liu C. Serotonin exhibits accelerated bleomycin-induced pulmonary fibrosis through TPH1 knockout mouse experiments. Mediators Inflamm. 2018;2018:7967868.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Kandhare AD, Kandhare AA, Bodhankar SL. Hesperidin ameliorates bleomycin-induced experimental pulmonary fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways. EXCLI J. 2019;18:723–45.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the National Natural Science Foundation of China (Grant No. 81402989 and 81570056) and the Natural Science Foundation of Zhejiang province, China (Grant No. LY18H310002 and LGD20H010002).

Author information

Authors and Affiliations

Authors

Contributions

LSC performed the literature search and drafted the article; SJR gave critical suggestion for the article; THF had the idea for the article and critically revised the work.

Corresponding author

Correspondence to Huifang Tang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agree to publish this paper.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Shi, J. & Tang, H. Animal models of drug-induced pulmonary fibrosis: an overview of molecular mechanisms and characteristics. Cell Biol Toxicol 38, 699–723 (2022). https://doi.org/10.1007/s10565-021-09676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-021-09676-z

Keywords

Navigation