Skip to main content

Advertisement

Log in

Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications

  • Mini Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The growing population increases the need to develop advanced biological methods for utilizing renewable and sustainable resources to produce environmentally friendly biofuels. Currently, energy resources are limited for global demand and are constantly depleting and creating environmental problems. Some higher chain alcohols, like butanol and ethanol, processing similar properties to gasoline, can be alternate sources of biofuel. However, the industrial production of these alcohols remains challenging because they cannot be efficiently produced by microbes naturally. Therefore, butanol is the most interesting biofuel candidate with a higher octane number produced naturally by microbes through Acetone–Butanol–Ethanol fermentation. Feedstock selection as the substrate is the most crucial step in biobutanol production. Lignocellulosic biomass has been widely used to produce cellulosic biobutanol using agricultural wastes and residue. Specific necessary pretreatments, fermentation strategies, bioreactor designing and kinetics, and modeling can also enhance the efficient production of biobutanol. The recent genetic engineering approaches of gene knock in, knock out, and overexpression to manipulate pathways can increase the production of biobutanol in a user friendly host organism. So far various genetic manipulation techniques like antisense RNA, TargeTron Technology and CRISPR have been used to target Clostridium acetobutylicum for biobutanol production. This review summarizes the recent research and development for the efficient production of biobutanol in various aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam A et al (2020) Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus. Renew Energy 159:1128–1138

    Article  CAS  Google Scholar 

  • Al-Oqla FM, Sapuan S (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    Article  CAS  Google Scholar 

  • Amin FR, Khalid H, Zhang H, Zhang R, Liu G, Chen C (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7:1–12

    Article  Google Scholar 

  • Amiri H, Karimi K, Zilouei H (2014) Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Biores Technol 152:450–456

    Article  CAS  Google Scholar 

  • Anstruther A, Stewart GG (2022) An introduction to whisk (e) y and the development of Scotch whisky. Whisky and other spirits. Elsevier, Amsterdam, pp 1–6

    Google Scholar 

  • Arora S, Rani R, Ghosh S (2018) Bioreactors in solid state fermentation technology: design, applications and engineering aspects. J Biotechnol 269:16–34

    Article  CAS  PubMed  Google Scholar 

  • Artış Ü (2008) Enhanced butanol production by mutant strains of Clostridium acetobutylicum in molasses medium. Türk Biyokimya (turkish Journal of Biochemistry–turk J Biochem) 33:25–30

    Google Scholar 

  • Baghza NM (2014) The prevalence of hepatitis C virus among hemodialysis patients in yemen. J Purity Utility React Environ 3:62–66

    Google Scholar 

  • Bankar SB, Jurgens G, Survase SA, Ojamo H, Granström T (2015) Genetic engineering of Clostridium acetobutylicum to enhance isopropanol-butanol-ethanol production with an integrated DNA-technology approach. Renew Energy 83:1076–1083

    Article  CAS  Google Scholar 

  • Bravim F, Farias MC, Quadros ODF, Fernandes PMB (2017) Genetic enhancement of saccharomyces cerevisiae for first and second generation ethanol production. Industrial Biotechnology. Apple Academic Press, Toronto, pp 239–279

    Chapter  Google Scholar 

  • Cao X et al (2020) Co-valorization of paper mill sludge and corn steep liquor for enhanced n-butanol production with Clostridium tyrobutyricum Δcat1: adhE2. Biores Technol 296:122347

    Article  CAS  Google Scholar 

  • Cateto C, Hu G, Ragauskas A (2011) Enzymatic hydrolysis of organosolv Kanlow switchgrass and its impact on cellulose crystallinity and degree of polymerization. Energy Environ Sci 4:1516–1521

    Article  CAS  Google Scholar 

  • Chinwatpaiboon P, Doolayagovit I, Boonsombuti A, Savarajara A, Luengnaruemitchai A (2020) Comparison of acid-, alkaline-, and ionic liquid–treated Napier grass as an immobilization carrier for butanol production by Clostridium beijerinckii JCM 8026. Biomass Conversion and Biorefinery 10:1071–1082

    Article  CAS  Google Scholar 

  • Devi A, Singh A, Bajar S, Pant D, Din ZU (2021) Ethanol from lignocellulosic biomass: an in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. J Environ Chem Eng 9:105798

    Article  CAS  Google Scholar 

  • Du Y, Jiang W, Yu M, Tang IC, Yang ST (2015) Metabolic process engineering of Clostridium tyrobutyricum Δack–adhE2 for enhanced n-butanol production from glucose: effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnol Bioeng 112:705–715

    Article  CAS  PubMed  Google Scholar 

  • Du G, Wu Y, Kang W, Xu Y, Li S, Xue C (2022) Enhanced butanol production in Clostridium acetobutylicum by manipulating metabolic pathway genes. Process Biochem 114:134–138

    Article  CAS  Google Scholar 

  • Erdmann V, Mackfeld U, Rother D, Jakoblinnert A (2014) Enantioselective, continuous (R)-and (S)-2-butanol synthesis: achieving high space-time yields with recombinant E. coli cells in a micro-aqueous, solvent-free reaction system. J Biotechnol 191:106–112

    Article  CAS  PubMed  Google Scholar 

  • Etteh CC, Ibiyeye AO, Jelani FB, Rasheed AA, Ette OJ, Victor I (2021) Production of biobutanol using Clostridia Spp through novel ABE continuous fermentation of selected waste streams and industrial by-products. Sci Afr 12:e00744

    CAS  Google Scholar 

  • Foster C, Charubin K, Papoutsakis ET, Maranas CD (2021) Modeling Growth kinetics, interspecies cell fusion, and metabolism of a Clostridium acetobutylicum/Clostridium ljungdahlii syntrophic coculture. Msystems 6:e01325-e11320

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginni G et al (2021) Valorization of agricultural residues: different biorefinery routes. J Environ Chem Eng 9:105435

    Article  Google Scholar 

  • Hoang AT, Nizetic S, Ong HC, Chong CT, Atabani A (2021) Acid-based lignocellulosic biomass biorefinery for bioenergy production: advantages, application constraints, and perspectives. J Environ Manage 296:113194

    Article  CAS  PubMed  Google Scholar 

  • Hou X-D, Feng G-J, Ye M, Huang C-M, Zhang Y (2017) Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment. Biores Technol 238:139–146

    Article  CAS  Google Scholar 

  • Huang J, Du Y, Bao T, Lin M, Wang J, Yang S-T (2019) Production of n-butanol from cassava bagasse hydrolysate by engineered Clostridium tyrobutyricum overexpressing adhE2: kinetics and cost analysis. Biores Technol 292:121969

    Article  CAS  Google Scholar 

  • Huzir NM et al (2018) Agro-industrial waste to biobutanol production: eco-friendly biofuels for next generation. Renew Sustain Energy Rev 94:476–485

    Article  CAS  Google Scholar 

  • Jatoi AS et al (2021) A review on extractive fermentation via ion exchange adsorption resins opportunities, challenges, and future prospects. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-021-01417-w

    Article  Google Scholar 

  • Javed MR et al (2018) CRISPR-Cas system: history and prospects as a genome editing tool in microorganisms. Curr Microbiol 75:1675–1683

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Waghmare J, Sonawane K, Waghmare S (2015) Bio-ethanol and bio-butanol production from orange peel waste. Biofuels 6:55–61

    Article  CAS  Google Scholar 

  • Kirui A et al (2022) Carbohydrate-aromatic interface and molecular architecture of lignocellulose. Nat Commun 13:1–12

    Article  Google Scholar 

  • Klasson KT, Qureshi N, Powell R, Heckemeyer M, Eggleston G (2018) Fermentation of sweet sorghum syrup to butanol in the presence of natural nutrients and inhibitors. Sugar Tech 20:224–234

    Article  CAS  Google Scholar 

  • Krasňan V, Plž M, Marr AC, Markošová K, Rosenberg M, Rebroš M (2018) Intensified crude glycerol conversion to butanol by immobilized Clostridium pasteurianum. Biochem Eng J 134:114–119

    Article  Google Scholar 

  • Kumar A, Rapoport A, Kunze G, Kumar S, Singh D, Singh B (2020) Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: a review. Renew Energy 160:1228–1252

    Article  Google Scholar 

  • Kumar A, Kumar V, Singh B (2021) Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int J Biol Macromol 169:564–582

    Article  PubMed  Google Scholar 

  • Kwon JH et al (2016) Feasibility of a facile butanol bioproduction using planetary mill pretreatment. Biores Technol 199:283–287

    Article  CAS  Google Scholar 

  • Law L, Gutierrez N (2013) Butanol production by submerged fermentation of white grape pomace. Current Biotechnol 2:114–116

    Article  CAS  Google Scholar 

  • Lin PP, Rabe KS, Takasumi JL, Kadisch M, Arnold FH, Liao JC (2014) Isobutanol production at elevated temperatures in thermophilic Geobacillus thermoglucosidasius. Metab Eng 24:1–8

    Article  CAS  PubMed  Google Scholar 

  • López-Linares JC, García-Cubero MT, Coca M, Lucas S (2021) A biorefinery approach for the valorization of spent coffee grounds to produce antioxidant compounds and biobutanol. Biomass Bioenerg 147:106026

    Article  Google Scholar 

  • Lütke-Eversloh T (2014) Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 98:5823–5837

    Article  PubMed  Google Scholar 

  • Mondal S, Santra S, Rakshit S, Halder SK, Hossain M, Mondal KC (2022) Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum. Biores Technol 343:126093

    Article  CAS  Google Scholar 

  • Nguyenhuynh T, Nithyanandam R, Chong CH, Krishnaiah D (2017) A review on using membrane reactors in enzymatic hydrolysis of cellulose. J Eng Sci Technol 12:1129–1152

    Google Scholar 

  • Offei F, Mensah M, Thygesen A, Kemausuor F (2018) Seaweed bioethanol production: a process selection review on hydrolysis and fermentation. Fermentation 4:99

    Article  CAS  Google Scholar 

  • Olivieri G, Wijffels RH, Marzocchella A, Russo ME (2021) Bioreactor and bioprocess design issues in enzymatic hydrolysis of lignocellulosic biomass. Catalysts 11:680

    Article  CAS  Google Scholar 

  • Ozturk AB et al (2021) Techno-economic analysis of a two-step fermentation process for bio-butanol production from cooked rice. Sustain Energ Fuels 5:3705–3718

    Article  CAS  Google Scholar 

  • Patil RC, Suryawanshi PG, Kataki R, Goud VV (2019) Current challenges and advances in butanol production. Sustain Bioenerg. https://doi.org/10.1016/B978-0-12-817654-2.00008-3

    Article  Google Scholar 

  • Periyasamy K (2018) Bioethanol production from lignocellulosic biomass using immobilized cellulolytic enzymes. Anna University, Chennai

    Google Scholar 

  • Plaza PE, Gallego-Morales LJ, Peñuela-Vásquez M, Lucas S, García-Cubero MT, Coca M (2017) Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Biores Technol 244:166–174

    Article  CAS  Google Scholar 

  • Procentese A, Raganati F, Olivieri G, Russo ME, Marzocchella A (2017) Pre-treatment and enzymatic hydrolysis of lettuce residues as feedstock for bio-butanol production. Biomass Bioenerg 96:172–179

    Article  CAS  Google Scholar 

  • Procentese A, Raganati F, Navarini L, Olivieri G, Russo ME, Marzoccchella A (2018) Coffee silverskin as a renewable resource to produce butanol and isopropanol. Chem Eng Trans 64:53–56

  • Pugazhendhi A et al (2019) Biobutanol as a promising liquid fuel for the future-recent updates and perspectives. Fuel 253:637–646

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Klasson KT, Liu S (2018) Butanol production from sweet sorghum bagasse with high solids content: Part I—comparison of liquid hot water pretreatment with dilute sulfuric acid. Biotechnol Prog 34:960–966

    Article  CAS  PubMed  Google Scholar 

  • Raganati F, Olivieri G, Procentese A, Russo M, Salatino P, Marzocchella A (2013) Butanol production by bioconversion of cheese whey in a continuous packed bed reactor. Biores Technol 138:259–265

    Article  CAS  Google Scholar 

  • Raita S, Spalvins K, Blumberga D (2021) Prospect on agro-industrial residues usage for biobutanol production. Agron Res 19(1):877–895

  • Rao A, Sathiavelu A, Mythili S (2016) Genetic engineering in biobutanol production and tolerance. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016150612

    Article  Google Scholar 

  • Reichert CL et al (2020) Bio-based packaging: Materials, modifications, industrial applications and sustainability. Polymers 12:1558

    Article  CAS  PubMed Central  Google Scholar 

  • Rodionova MV et al (2021) A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int J Hydrogen Energy 47(3):1481–1498

  • Sahu MS, Samantaray MUS (2021) Characterization and cellulase production activity of different aspergillus Sp. Isolated from “Puri, Odisha” marine fungal strains. Int J Res Appl Sci Biotechnol 8:71–87

    Google Scholar 

  • Schmetz Q et al (2019) Versatility of a dilute acid/butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, monosaccharides and cellulose in distinct phases. ACS Sustain Chem Eng 7:11069–11079

    Article  CAS  Google Scholar 

  • Sharma HB, Sarmah AK, Dubey B (2020) Hydrothermal carbonization of renewable waste biomass for solid biofuel production: A discussion on process mechanism, the influence of process parameters, environmental performance and fuel properties of hydrochar. Renew Sustain Energy Rev 123:109761

    Article  CAS  Google Scholar 

  • Shukor H, Jalil R, Shoparwe NF (2022) Bioconversion of malaysia renewable energy resources to biobutanol. Renewable energy from bio-resources in Malaysia. Springer, Berlin, pp 117–146

    Chapter  Google Scholar 

  • Tang C et al (2017) Sustainable biobutanol production using alkali-catalyzed organosolv pretreated cornstalks. Ind Crops Prod 95:383–392

    Article  CAS  Google Scholar 

  • Tigunova OO et al (2020) Biobutanol production from plant biomass. Open Agric J 14:187–197

    Article  CAS  Google Scholar 

  • Valles A, Álvarez-Hornos FJ, Martínez-Soria V, Marzal P, Gabaldón C (2020) Comparison of simultaneous saccharification and fermentation and separate hydrolysis and fermentation processes for butanol production from rice straw. Fuel 282:118831

    Article  CAS  Google Scholar 

  • Verardi A, Lopresto CG, Blasi A, Chakraborty S, Calabrò V (2020) Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. Lignocellulosic biomass to liquid biofuels. Elsevier, Amsterdam, pp 67–125

    Chapter  Google Scholar 

  • Veza I, Said MFM, Latiff ZA (2021) Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation. Biomass Bioenerg 144:105919

    Article  CAS  Google Scholar 

  • Villacreses-Freire D, Ketzer F, Rösch C (2021) Advanced metabolic engineering approaches and renewable energy to improve environmental benefits of algal biofuels: LCA of Large-scale biobutanol production with cyanobacteria synechocystis PCC6803. BioEnergy Res 1–16

  • Wang M, Fan L, Tan T (2014) 1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Adv 4:57791–57798

    Article  CAS  Google Scholar 

  • Wang Y et al (2017) Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv 35:1049–1059

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhao J, Yu L, Tang I-C, Xue C, Yang S-T (2015) Engineering Clostridium acetobutylicum with a histidine kinase knockout for enhanced n-butanol tolerance and production. Appl Microbiol Biotechnol 99:1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu L, Lin M, Yan Q, Yang S-T (2017) n-Butanol production from sucrose and sugarcane juice by engineered Clostridium tyrobutyricum overexpressing sucrose catabolism genes and adhE2. Biores Technol 233:51–57

    Article  CAS  Google Scholar 

  • Zhang J, Zong W, Hong W, Zhang Z-T, Wang Y (2018) Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Hong W, Guo L, Wang Y, Wang Y (2020) Enhancing plasmid transformation efficiency and enabling CRISPR-Cas9/Cpf1-based genome editing in Clostridium tyrobutyricum. Biotechnol Bioeng 117:2911–2917

    Article  CAS  PubMed  Google Scholar 

  • Zingaro KA, Nicolaou SA, Yuan Y, Papoutsakis ET (2014) Exploring the heterologous genomic space for building, stepwise, complex, multicomponent tolerance to toxic chemicals. ACS Synth Biol 3:476–486

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

NA, SM, AAN and YS designed the research theme , SR, MM, RE and SA carried out most of the data analysis, documentation, write up and discussed with all the co-author, NA, SM and SR reviewed the manuscript, QS and SHA provided all the facilities required at Instituation.

Corresponding author

Correspondence to Sana Riaz.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Mazhar, S., Abidi, S.H. et al. Biobutanol production from sustainable biomass process of anaerobic ABE fermentation for industrial applications. Arch Microbiol 204, 672 (2022). https://doi.org/10.1007/s00203-022-03284-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-022-03284-z

Keywords

Navigation