Skip to main content

Bioconversion of Malaysia Renewable Energy Resources to Biobutanol

  • Chapter
  • First Online:
Renewable Energy from Bio-resources in Malaysia

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Production of biofuel from renewable resources has gained interest to the government’s, researchers and policymakers throughout the world due to the depletion of conventional fuels and environmental issues. As a country that is rich in various types of bioresources, Malaysia can be one of the top biofuel producers in Asia. Several types of biofuels can be produced from these resources, including biobutanol, four-carbon alcohol that has outstanding characteristics more similar to gasoline. Thus, this chapter will begin with an overview of biobutanol production and the possibility of Malaysia bioresources as a feedstock in biobutanol production. The role of the government in existing policies and action plans towards the development of Malaysia's renewable energy industry also has been analysed. Subsequently, several challenges and resolutions related to the development of biobutanol production were also addressed. The potential of biobutanol to replace gasoline and the economics of ABE fermentation in biobutanol production will be the last part of this chapter. Overall, this chapter will give a better understanding and view of the current situation on biobutanol production using Malaysia's renewable resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fulton L, Howers T, Hardy J (2004) Biofuels for transport: an international perspective. International Energy Agency, Paris

    Google Scholar 

  2. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    PubMed  Google Scholar 

  3. Watanabe K (2008) Recent developments in microbial fuel cell technologies for sustainable bioenergy. J Biosci Bioeng 106(6):528–536

    CAS  PubMed  Google Scholar 

  4. Ahmad F, Jameel AT, Kamarudin MH, Mel M (2011) Study of growth kinetic and modelling of ethanol production by Saccharomyces cerevisae. Afr J Biotech 16(81):18842–18846

    Google Scholar 

  5. Jørgensen H, Sanadi AR, Felby C, Lange NEK, Fischer M, Ernst S (2010) Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Appl Biochem Biotechnol 161(1–8):318–332

    PubMed  Google Scholar 

  6. Chua TK, Liang DW, Qi C, Yang KL, He J (2013) Characterization of a butanol-acetone-producing Clostridium strain and identification of its solventogenic genes. Biores Technol 135:372–378

    CAS  Google Scholar 

  7. Shinto H, Tashiro Y, Kobayashi G, Sekiguchi T, Hanai T, Kuriya Y, Okamoto M, Yamashita M, Sonomoto K (2008) Kinetic study of substrate dependency for higher butanol production in acetone–butanol–ethanol fermentation. Process Biochem 43(12):1452–1461

    CAS  Google Scholar 

  8. Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union : use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71(5):587–597

    CAS  PubMed  Google Scholar 

  9. Dürre P (2008) Fermentative butanol production: Bulk chemical and biofuel. Ann N Y Acad Sci 1125:353–362

    PubMed  Google Scholar 

  10. Shapovalov O, Ashkinazi L (2008) Biobutanol: biofuel of the second generation. Russ J Appl Chem 81:2232–2236

    CAS  Google Scholar 

  11. Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: Part II—Use of corn stover and switchgrass hydrolysate. Biomass Bioenerg 34:566–571

    CAS  Google Scholar 

  12. Abd-Alla MH, Elsadek El-Enany AW (2012) Production of acetone-butanol-ethanol from spoilage date palm (Phoenix dactylifera L.) fruits by mixed culture of Clostridium acetobutylicum and Bacillus subtilis. Biomass Bioenerg 42:172–178

    CAS  Google Scholar 

  13. Chen WHH, Chen YC, Lin JG (2013) Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions. Biores Technol 135:262–268

    CAS  Google Scholar 

  14. Zhang Y, Han B, Ezeji TC (2012) Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. New Biotechnol 29(3):345–351

    Google Scholar 

  15. The Diplomat (2021). Available via https://thediplomat.com/2021/06/indonesia-needs-to-seek-out-alternative-sources-for-biofuel/. Accessed 19 Mar 2021

  16. Ong HC, Mahlia TMI, Masjuki HH (2012) A review on energy pattern and policy for transportation sector in Malaysia. Renew Sustain Energy Rev 16:532–542

    Google Scholar 

  17. Chua SC, Oh TH (2010) Review on Malaysia’s national energy developments: Key Policies, agencies, programmes and international involvements. Renew Sustain Energy Rev 14:2916–2925

    Google Scholar 

  18. Malaysia Palm Oil Board (MPOB) 2020. Available via https://bepi.mpob.gov.my/images/overview/Overview_of_Industry_2020.pdf. Accessed 2 Apr 2021

  19. Al-Shorgani NKN, Shukor H, Abdeshahian P, Nazir MY, Kalili MS, Hamid AA, Yusoff WMW (2015) Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using palm oil mill effluent in acetone–butanol–ethanol fermentation. Biocatal Agric Biotechnol 4(2):244–249

    Google Scholar 

  20. Shukor H, Abdeshahian P, Al-Shorgani NKN, Hamid AA, Rahman NA, Kalil MS (2016) Saccharification of polysaccharide content of palm kernel cake using enzymatic catalysis for production of biobutanol in acetone–butanol–ethanol fermentation. Biores Technol 202:206–213

    CAS  Google Scholar 

  21. Ibrahim MF, Abd-Aziz S, Yusoff MEM, Phang LY, Hassan MA (2015) Simultaneous enzymatic saccharification and ABE fermentation using pretreat oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew Energy 77:447–455

    CAS  Google Scholar 

  22. Komonkiat I, Cheirsilp B (2013) Felled oil palm trunk as a renewable source for biobutanol production by Clostridium sp. Bioresour Technol 146:200–207

    CAS  PubMed  Google Scholar 

  23. Abdul Razak MN, Ibrahim MF, Yee PI, Hassan MA, Abd-Aziz S (2013) Statistical optimization of biobutanol production from oil palm decanter cake hydrolysate by Clostridium acetobutylicum ATCC 824. BioResources 8:1758–1770

    Google Scholar 

  24. Syazana N, Nasrah M, Khushairi A, Zahari M, Masagut N (n.d.) Biobutanol production by Clostridium acetobutylicum ATCC 824 using oil palm frond (OPF) juice

    Google Scholar 

  25. Department of Statistics Malaysia Official Portal. Available via http://dosm.gov.my. Accessed 5 Apr 2021

  26. Qureshi N, Saha BC, Cotta M, Singh V (2013) An economic evaluation of biological conversion of wheat straw to butanol: A biofuel. Energy Convers Manage 65:456–462

    CAS  Google Scholar 

  27. He Q, Chen H (2013) Improved efficiency of butanol production by absorbed lignocellulose fermentation. J Biosci Bioeng 115:298–302

    CAS  PubMed  Google Scholar 

  28. Zhang J, Wang M, Gao M, Fang X, Yano S, Qin S et al (2013) Efficient acetone-butanol-ethanol production from corncob with a new pretreatment technology-wet disk milling. bioenergy. Research 6:35–43

    Google Scholar 

  29. Cheng C-L, Che P-Y, Chen B-Y, Lee W-J (2012) Biobutanol production from agricultural waste by an acclimated mixed bacterial microflora. Appl Energy 100:3–9

    CAS  Google Scholar 

  30. Moradi F, Amiri H, Soleimanian-Zad S, Ehsani MR, Karimi K (2013) Improvement of acetone, butanol and ethanol production from rice straw by acid and alkaline pretreatments. Fuel 112:8–13

    CAS  Google Scholar 

  31. Al-Shorghani NKN, Kalil MS, Yusoff WMW (2012) Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst Eng 35:817–826

    Google Scholar 

  32. Khedkar MA, Nimbalkar PR, Gaikwad SG, Chavan PV, Bankar SB (2017) Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B527; drying kinetics study. Bioresour Technol 225:359–366

    CAS  PubMed  Google Scholar 

  33. Avula SV, Reddy S, Reddy LV (2015) The feasibility of mango (Mangifera indica L.) peel as an alternative substrate for butanol production. BioResources 10:4453–4459

    Google Scholar 

  34. Falbe J (1970) Carbon monoxide in organic synthesis. Springer Verlag, Berlin-Heidelberg, New York

    Google Scholar 

  35. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101(2):209–228

    CAS  PubMed  Google Scholar 

  36. Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50(4):484–524

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dürre P (1998) New insights and novel developments in clostridial acetone-butanol-isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Google Scholar 

  38. McNeil B, Kristiansen B (1987) The effect of medium composition on the acetone–butanol fermentation in continuous culture. Biotechnol Bioeng 29(3):383–387

    CAS  PubMed  Google Scholar 

  39. Ni Y, Wang Y, Sun Z (2012) Butanol Production from cane molasses by Clostridium saccharobutylicum DSM 13864: batch and semicontinuous fermentation. Appl Biochem Biotechnol 166(8):1896–1907

    CAS  PubMed  Google Scholar 

  40. Qureshi N, Cotta MA, Saha BC (2014) Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors. Food Bioprod Process 92(3):298–308

    CAS  Google Scholar 

  41. Li X, Li Z, Zheng J, Shi Z, Li L (2012) Yeast extract promotes phase shift of bio-butanol fermentation by Clostridium acetobutylicum ATCC824 using cassava as substrate. Biores Technol 125:43–51

    CAS  Google Scholar 

  42. Li HG, Luo W, Gu QY, Wang Q, Hu WJ, Yu XB (2013) Acetone, butanol, and ethanol production from cane molasses using Clostridium beijerinckii mutant obtained by combined low-energy ion beam implantation and n-methyl-n-nitro-n-nitrosoguanidine induction. Biores Technol 137:254–260

    CAS  Google Scholar 

  43. Zheng J, Tashiro Y, Yoshida T, Gao M, Wang Q, Sonomoto K (2013) Continuous butanol fermentation from xylose with high cell density by cell recycling system. Biores Technol 129:360–365

    CAS  Google Scholar 

  44. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30(6):419–427

    CAS  PubMed  Google Scholar 

  45. Jin C, Yao M, Liu H, Lee CF, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15(8):4080–4106

    CAS  Google Scholar 

  46. Cai X, Bennett GN (2011) Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. J Ind Microbiol Biotechnol 38(8):1013–1025

    CAS  PubMed  Google Scholar 

  47. Dai Z, Dong H, Zhu Y, Zhang Y, Li Y, Ma Y (2012) Introducing a single secondary alcohol dehydrogenase into butanol-tolerant Clostridium acetobutylicum Rh8 switches ABE fermentation to high level IBE fermentation. Biotechnol Biofuels 5:44

    PubMed  PubMed Central  Google Scholar 

  48. Khamaiseh EI, Abdul Hamid A, Abdeshahian P, Wan Yusoff WM, Kalil MS (2014) Enhanced butanol production by Clostridium acetobutylicum NCIMB 13357 grown on date fruit as carbon source in P2 medium. Sci World J 2014:1–7

    Google Scholar 

  49. Li RD, Li YY, Lu LY, Ren C, Li YX, Liu L (2011) An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis. BMC Syst Biol 5(Suppl 1):S12

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sivagnanam K, Raghavan VG, Shah M, Hettich RL, Verberkmoes NC, Lefsrud MG (2011) Comparative shotgun proteomic analysis of Clostridium acetobutylicum from butanol fermentation using glucose and xylose. Proteome Science 9:66

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Isar J, Rangaswamy V (2012) Improved n-butanol production by solvent tolerant Clostridium beijerinckii. Biomass Bioenerg 37:9–15

    CAS  Google Scholar 

  52. Liu Q, Zhang X, Zhou Y, Zhao A, Chen S, Qian G, Xu ZP (2011) Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement. Biores Technol 102(18):8661–8668

    CAS  Google Scholar 

  53. Qureshi N, Bowman MJ, Saha BC, Hector R, Berhow MA, Cotta MA (2012) Effect of cellulosic sugar degradation products (furfural and hydroxymethylfurfural) on acetone–butanol–ethanol (ABE) fermentation using Clostridium beijerinckii P260. Food Bioprod Process 90(3):533–540

    CAS  Google Scholar 

  54. Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE (2013) Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media. Biores Technol 130:125–135

    CAS  Google Scholar 

  55. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Al-Shorgani NK, M. S. K. and W. M. W. Y, (2011) The effect of different carbon sources on biobutanol production using Clostridium saccharoperbutylacetonicum N1-4. Biotechnology 10(3):280–285

    Google Scholar 

  56. Al-Shorgani NKN, Kalil MS, Yusoff WMW (2012) Biobutanol production from rice bran and de-oiled rice bran by Clostridium saccharoperbutylacetonicum N1-4. Bioprocess Biosyst Eng 35(5):817–826

    CAS  PubMed  Google Scholar 

  57. Shukor H, Al-Shorgani NKN, Abdeshahian P, Hamid AA, Anuar N, Rahman NA, Kalil MS (2014) Production of butanol by Clostridium saccharoperbutylacetonicum N1-4 from palm kernel cake in acetone-butanol-ethanol fermentation using an empirical model. Biores Technol 170:565–573

    CAS  Google Scholar 

  58. Yu M, Zhang Y, Tang IC, Yang ST (2011) Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metab Eng 13(4):373–382

    CAS  PubMed  Google Scholar 

  59. Ni Y, Xia Z, Wang Y, Sun Z (2013) Continuous butanol fermentation from inexpensive sugar-based feedstocks by Clostridium saccharobutylicum DSM 13864. Biores Technol 129:680–685

    CAS  Google Scholar 

  60. Jesse TW, Ezeji TC, Qureshi N, Blaschek HP (2002) Production of butanol from starch-based waste packing peanuts and agricultural waste. J Ind Microbiol Biotechnol 29(3):117–123

    CAS  PubMed  Google Scholar 

  61. Andreesen JR, Bahl H, Gottschalk G (1989) Introduction to the physiology and biochemistry of the genus Clostridium. Clostridia: Biotechnology Handbooks 3:27–62

    Google Scholar 

  62. Thang VH, Kanda K, Kobayashi G (2010) Production of Acetone–Butanol–Ethanol (ABE) in Direct Fermentation of Cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 161:157–170

    CAS  PubMed  Google Scholar 

  63. Al-Shorgani NKN, Shukor H, Abdeshahian P, Wan Yusoff WM, Kalil MS, Abdul Hamid A (2015) Process optimization of butanol production by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) using palm oil mill effluent in acetone-butanol-ethanol fermentation. Biocatal Agric Biotechnol 4(2):244–249

    Google Scholar 

  64. Lee S, Kim P (2020) Current status and applications of adaptive laboratory evolution in industrial microorganisms. J Microbiol Biotechnol 30(6):793–803

    CAS  PubMed  Google Scholar 

  65. Du B, Olson CA, Sastry AV, Fang X, Phaneuf PV, Chen K, Wu M, Szubin R, Xu S, Gao Y, Hefner Y, Feist AM, Palsson BO (2020) Adaptive laboratory evolution of Escherichia coli under acid stress. Microbiology (Reading) 166(2):141–148

    CAS  Google Scholar 

  66. Espinosa M, Gonzalez-Garcia RA, Valgepea K, Plan MR, Scott C, Pretorius IS, Marcellin E, Paulsen IT, Williams TC (2020) Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat Commun 11(1):1–12

    Google Scholar 

  67. Wang L, Xue C, Wang L, Zhao Q, Wei W, Sun Y (2016) Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Biores Technol 205:264–268

    CAS  Google Scholar 

  68. Li X, Pei G, Liu L, Chen L, Zhang W (2017) Metabolomic analysis and lipid accumulation in a glucose tolerant Crypthecodinium cohnii strain obtained by adaptive laboratory evolution. Biores Technol 235:87–95

    CAS  Google Scholar 

  69. Macias D, Blasco R (2019) A case of adaptive laboratory evolution (ALE): biodegradation of furfural by Pseudomonas pseudoalcaligenes CECT 5344. Genes 10(7):499

    PubMed Central  Google Scholar 

  70. Oide S, Gunji W, Moteki Y, Yamamoto S, Suda M, Jojima T, Yukawa H (2015) Thermal and solvent stress cross-tolerance conferred to Corynebacterium glutamicum by adaptive laboratory evolution. Appl Environ Microbiol 81(7):2284–2298

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian L, Cervenka ND, Low AM, Olson DG, Lynd LR (2019) A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol, and ethanol. Sci Rep 9(1):1–7

    Google Scholar 

  72. Xu M, Zhao J, Yu L, Yang ST (2017) Comparative genomic analysis of Clostridium acetobutylicum for understanding the mutations contributing to enhanced butanol tolerance and production. J Biotechnol 263(August):36–44

    CAS  PubMed  Google Scholar 

  73. Jain MK, Beacom D, Rathin D, Datta R (1993) Mutant strain of C. acetobutylicum and process making butanol. US5192673 A

    Google Scholar 

  74. Jiang W, Zhao J, Wang Z, Yang S-T (2014) Stable high-titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. Bioresour Technnol 163:172–179

    CAS  Google Scholar 

  75. Sakuragi H, Morisaka H, Kuroda K, Ueda M (2015) Enhanced butanol production by eukaryotic Saccharomyces cerevisiae engineered to contain an improved pathway. Biosci Biotechnol Biochem 79:314–320

    CAS  PubMed  Google Scholar 

  76. Kuroda K, Ueda M (2016) Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production. FEMS Microbiol Lett 363

    Google Scholar 

  77. Ibrahim MF, Abd-Aziz S, Yusoff MEM, Phang LY, Hassan MA (2015) Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel. Renew Energy 77:447–455

    CAS  Google Scholar 

  78. Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part 1-batch fermentation. Biomass-Bioenergy 32:168–175

    CAS  Google Scholar 

  79. Madihah MS, Ariff AB, Sahaid KM, Suraini AA, Karim MIA (2001) Direct fermentation of gelatinized sago starch to acetone-butanol-ethanol by Clostridium acetobutylicum. World J Microbiol Biotechnol 17:756–776

    Google Scholar 

  80. Li H, Luo W, Wang Q, Yu X (2014) Direct Fermentation of Gelatinized Cassava Starch to Acetone, Butanol and Ethanol Using Clostridium acetobutylicum Mutant Obtained by Atmospheric and Room Temperature Plasma. Appl Biochem Biothcnol 172:333–341

    Google Scholar 

  81. Li T, Yan Y, He J (2015) Enhanced direct fermentation of cassava to butanol by Clostridium species strain BOH3 in cofactor-mediated medium. Biotechnol Biofuels 8:166

    PubMed  PubMed Central  Google Scholar 

  82. Lopez-Contreres AM, Gabor K, Martens AA, Renckens BAM, Claassen PAM, Van Der Oost J et al (2004) Substrate-induced production and secretion of cellulase by Clostridium acetobutylicum. Appl Environ Microbiol 70:5238–5243

    Google Scholar 

  83. Wang Z, Cao G, Zheng J, Fu D, Song J, Zhang J et al (2015) Developing a mesophilic co-culture for direct conversion of cellulose to butanol in consolidated bioprocess. Biotechnol Biofuels 8:84

    PubMed  PubMed Central  Google Scholar 

  84. Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Begum S, Dahman Y (2015) Enhanced biobutanol production using novel clostridial fusant in simultaneous saccharification and fermentation of green renewable agricultural residues. Biofuels, Bioprod Bioref 9:529–544

    CAS  Google Scholar 

  86. Salleh MSM, Ibrahim MF, Roslan AM, Abd-Aziz S (2019) Scientific Reports 9, Article number: 7443

    Google Scholar 

  87. Trade and Industry Related Emerging Issues Division Ministry of International Trade and Industry (MITI) 2017. Available online https://www.miti.gov.my/miti/resources/Article_on_Malaysia_UNFCCC-_Paris_Agreement.pdf?mid=572. Accessed 2 May 2021

  88. Economic Planning Unit (EPU) (2001) Eight Malaysia plan. Available online http://www.pmo.gov.my/dokumenattached/RMK/RM8.pdf. Accessed 23 Apr 2021

  89. Sovacool BK, Drupady IM (2011) Examining the small renewable energy power (SREP) program in Malaysia. Energy Policy 39:7244–7256

    Google Scholar 

  90. Ministry of Science, Technology and Innovation (MOSTI) (2005). Available online https://mastic.mosti.gov.my/sti-policies/national-biotechnology-policy. Accessed 24 Apr 2021

  91. Economic Planning Unit (EPU) (2006) Ninth Malaysia Plan. Available online http://www.pmo.gov.my/dokumenattached/RMK/RM9_Epdf. Accessed 23 Apr 2021

  92. Kementerian Tenaga Teknologi Hijau dan Air (KeTTHA) (2011) The national green technology policy. Available online http://portal.ppj.gov.my. Accessed 24 Apr 2021

  93. Sustainable Energy Development Authority (SEDA) (2009) National renewable energy policy and action plan SEDA 2009. http://seda.gov.my. Accessed 24 Apr 2021

  94. Sustainable Energy Development Authority (SEDA) (2011) Renewable energy act 2011. Available online http://www.seda.gov.my. Accessed 24 Apr 2021

  95. Malaysia Industry-Government Group for High Technology Program (MiGHT) (2013) Malaysia Biomass industry action plan 2020: driving SMEs towards sustainable future. MiGHT, Selangor, Malaysia, pp 1–80

    Google Scholar 

  96. Bioeconomy Corporation (2015) Bioeconomy transformation programme annual report 2015. Available online http://www.bioeconomycorporation.my. Accessed 28 Apr 2021

  97. Agensi Inovasi, Malaysia (AIM) (2013) Malaysia Biomass Strategy 2020: new wealth creation for Malaysia’s palm oil industry 2013:1–32. https://doi.org/10.1016/j.ijggc.2012.07.010

  98. Antil S (2019) Biobutanol: production, scope and challenges. Int J Curr Microbiol App Sci 8(11):580–584

    CAS  Google Scholar 

  99. Bharathiraja, B., Jayamuthunagai, J., Sudharsanaa, T., Bharghavi, A., Praveenkumar, R., Chakravarthy, M., & Devarajan, Y (2017) Biobutanol—an impending biofuel for future: a review on upstream and downstream processing techniques. Renewable and Sustainable Energy Reviews 68(October 2016), 788–807

    Google Scholar 

  100. Ibrahim MF, Ramli N, Kamal Bahrin E, Abd-Aziz S (2017) Cellulosic biobutanol by Clostridia: challenges and improvements. Renew Sustain Energy Rev 79:1241–1254

    CAS  Google Scholar 

  101. Kaminski W, Tomczak E, Gorak A (2011) Bioutanol—production and purification methods. Ecol Chem Eng 18(1):31–37

    CAS  Google Scholar 

  102. Shamsudheen S, Mn S, Cp N, Fasil Vp, M, Paul J (2008) Performance analysis and feasibility study of bio-butanol as a potential substitute to gasoline in spark ignition engine. Int Res J Eng Technol, June. www.irjet.net

  103. Mahapatra MK, Kumar A (2017) A short review on biobutanol, a second-generation biofuel production from lignocellulosic biomass. J Clean Energy Technol 5(1): 27–30. https://doi.org/10.18178/jocet.2017.5.1.338

  104. Rafidah J, Sahaid MK, Norliza AR, Al-Tabib AI, Aidil AH, Mohd Farid A (2020) Effect of initial fermentation medium on bioacetone, biobutanol and bioethanol (BioABE) production from fermentable sugars of Acacia mangium using Clostridium acetobutylicum YM1. BioResources 15(3):6912–6927

    Google Scholar 

  105. Al-Tabib AI, Al-Shorgani NKN, Hassimi AH, Aidil AH, Mohd Sahaid K (2017) Production of acetone, butanol and ethanol (ABE) by Clostridium acetobutylicum YM1 from pretreated palm kernel cake in batch culture fermentation. BioResources 12(2):3371–3386

    CAS  Google Scholar 

  106. Nur Syazana MN, Mior Ahmad Khushairi MZ, Nasratun M, Hidayah A (2016) Statistical optimization for biobutanol production by Clostridium acetobutylicum ATCC 824 from oil palm frond (OPF) juice using response surface methodology. MATEC Web Conf 111(03001):1–8. https://doi.org/10.1007/s10532-010-9428-y

  107. Rahnama N, Foo HL, Nor Aini AR, Arbakariya A, Umi Kalsom MS (2014) Saccharification of rice straw by cellulase from local Trichoderma harzianum SNRS3 for biobutanol production. BMC Biotechnol 14(103):1–12

    Google Scholar 

  108. Nur Atheera Aiza MR, Mohamad Faizal I, Eyzana KB, Suraini A (2018) Optimisation of simultaneous saccharification and fermentation (SSF) for biobutanol production using pretreated oil palm empty fruit bunch. Molecules 23(8):1944. https://doi.org/10.3390/molecules23081944

  109. Al-Shorgani NKN, Kalil MS, Yusoff WMW, Hamid AA (2018) Impact of pH and butyric acid on butanol production during batch fermentation using a new local isolate of Clostridium acetobutylicum YM1. Saudi J Biol Sci 25(2):339–348

    CAS  PubMed  Google Scholar 

  110. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88(6):1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055

    Article  CAS  Google Scholar 

  111. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153(1–3):13–20

    CAS  PubMed  Google Scholar 

  112. Visioli LJ, Enzweiler H, Kuhn RC, Schwaab M, Mazutti MA (2014) Recent advances on biobutanol production. Sust Chem Process 2(1):15

    Google Scholar 

  113. Obergruber M, Hönig V, Procházka P, Kučerová V, Kotek M, Bouček J, Mařík J (2021) Physicochemical properties of biobutanol as an advanced biofuel. Materials 14(4):1–21

    Google Scholar 

  114. Kushwaha D, Srivastava N, Mishra I, Upadhyay SN, Mishra PK (2019) Recent trends in biobutanol production. Rev Chem Eng 35(4):475–504

    CAS  Google Scholar 

  115. Kushwaha D, Upadhyay SN, Mishra PK (2018) Nanotechnology in bioethanol/biobutanol production. In: Green nanotechnology for biofuel production, pp 115–127

    Google Scholar 

  116. Kamiński W, Tomczak E, Górak A (2011) Biobutanol-Production and purification methods. Ecol Chem Eng S 18(1):31–37

    Google Scholar 

  117. Nakayama S, Morita T, Negishi H, Ikegami T, Sakaki K, Kitamoto D (2008) Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation. FEMS Yeast Res 8(5):706–714

    CAS  PubMed  Google Scholar 

  118. Yen HW, Chen ZH, Yang IK (2012) Use of the composite membrane of poly (ether-block-amide) and carbon nanotubes (CNTs) in a pervaporation system incorporated with fermentation for butanol production by Clostridium acetobutylicum. Biores Technol 109:105–109

    CAS  Google Scholar 

  119. Ezeji TC, Qureshi N, Blaschek HP (2004) Acetone butanol ethanol (ABE) production from concentrated substrate: Reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63(6):653–658

    CAS  PubMed  Google Scholar 

  120. Evans PJ, Wang HY (1988) Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol-oleyl alcohol mixed extractants. Appl Environ Microbiol 54(7):1662–1667

    Google Scholar 

  121. Jeon YJ, Lee YY (1989) In-situ product separation in butanol fermentation by membrane-assisted extraction. Enzym Microb Technol 11:575–582

    CAS  Google Scholar 

  122. Ranjan A, Moholkar VS (2012) Biobutanol: science, engineering, and economics. Int J Energy Res 36:277–323

    CAS  Google Scholar 

  123. Zheng J, Tashiro Y, Wang Q, Sonomoto K (2015) Recent advances to improve fermentative butanol production: genetic engineering and fermentation technology. J Biosci Bioeng 119:1–9

    CAS  PubMed  Google Scholar 

  124. Ha SH, Mai NL, Koo YM (2010) Butanol recovery from aqueous solution into ionic liquids by liquid-liquid extraction. Process Biochem 45(12):1899–1903

    CAS  Google Scholar 

  125. Nawab S, Wang N, Ma X, Huo YX (2020) Genetic engineering of non-native hosts for 1-butanol production and its challenges: A review. Microb Cell Fact 19(1):1–16

    Google Scholar 

  126. Wang Q, Zhang C, Lu L, Yao R, Xu S, Wang Y (2016) Optimization of biobutanol production from poplar wood hydrolysate using a mutant of Clostridium saccharobutylicum. BioResources 11(2):2998–3012

    CAS  Google Scholar 

  127. Gaspar DJ, Phillips SD, Polikarpov E, Albrecht KO, Jones SB, George A, Landera A, Santosa DM, Howe DT, Baldwin AG, Bays JT (2019) Measuring and predicting the vapor pressure of gasoline containing oxygenates. Fuel 243(February):630–644

    CAS  Google Scholar 

  128. Hönig V, Orsák M, Pexa M, Linhart Z (2015) The distillation characteristics of automotive gasoline containing biobutanol, bioethanol and the influence of the oxygenates. Agron Res 13(2):558–567

    Google Scholar 

  129. Mordor Intelligence (2018). Available online https://mordorintelligence.com/industry-reports/bio-butanol-market. Accessed 11 June 2021

  130. Dong J, Du Y, Zhou Y, Yang ST (2014) Butanol production from soybean hull and soy molasses by acetone-butanol-ethanol fermentation. ACS Symp Ser 1178:25–41

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from Fundamental Research Grant Scheme (FRGS) under a grant number of FRGS/1/2021/TK0/UNIMAP/02/31 from the Ministry of Higher Education Malaysia (KPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiza Shukor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukor, H., Jalil, R., Shoparwe, N.F. (2022). Bioconversion of Malaysia Renewable Energy Resources to Biobutanol. In: Shukor, H., Mohd Zaini Makhtar, M., Yaser, A.Z. (eds) Renewable Energy from Bio-resources in Malaysia. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-9314-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9314-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9313-7

  • Online ISBN: 978-981-16-9314-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics