Skip to main content
Log in

Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass

  • Review Paper
  • Metabolic Engineering and Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Biomass is renewable and most abundant raw material on earth. Technologies have been employed to utilize this vast renewable resource for biofuel production. In recent years, microorganisms have received much attention for biofuel production so that it can replace the non-renewable fossil fuels. They secrete synergistic enzymes for degrading the complex biomass to simple sugars and subsequently fermenting them to alcohol. With the help of recombinant DNA technology and other metabolic engineering, biomass metabolizing enzymes and bioethanol producing microbes have been developed which have been used as consolidated bioprocessing (CBP) reactors. In CBP, both hydrolysis and fermentation are carried out in a single reaction vessel. This review focuses on the recent achievements that have been made in some important industrial bacteria so that they are better capable of scavenging the biomass for bioethanol production. We have concentrated on introduction of heterologous genes and modifications of metabolic pathways in these microbes so that they can ferment a wide variety of sugars and at the same time can overcome the major challenges faced by them during ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKendry, P. (2002) Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83: 37–46.

    CAS  PubMed  Google Scholar 

  2. Azhar, S. H. M., R. Abdulla, S. A. Jambo, H. Marbawi, J. A. Gansau, A. A. M. Faik, and K. F. Rodrigues (2017) Yeasts in sustainable bioethanol production: A review. Biochem. Biophys. Rep. 10: 52–61.

    Google Scholar 

  3. Anwar, Z., M. Gulfraz, and M. Irshad (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. Appl. Sci. 7: 163–173.

    CAS  Google Scholar 

  4. Marriott, P. E., L. D. Gómez, and S. J. McQueen-Mason (2015) Unlocking the potential of lignocellulosic biomass through plant science. New Phytol. 209: 1366–1381.

    PubMed  Google Scholar 

  5. Agbor, V. B., N. Cicek, R. Sparling, A. Berlin, and D. B. Levin (2011) Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 29: 675–685.

    CAS  PubMed  Google Scholar 

  6. Galbe, M., G. Liden, and G. Zacchi (2005) Production of ethanol from biomass — research in Sweden. J. Sci. Ind. Res. 64: 905–919.

    CAS  Google Scholar 

  7. Kricka, W., J. Fitzpatrick, and U. Bond (2014) Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicelluloses from biomass: a perspective. Front. Microbiol. 5: 174.

    PubMed  PubMed Central  Google Scholar 

  8. Yang, P., H. Zhang, and S. Jiang (2016) Construction of recombinant sestc Saccharomyces cerevisiae for consolidated bioprocessing, cellulase characterization, and ethanol production by in situ fermentation. 3 Biotech. 6: 192.

    PubMed  PubMed Central  Google Scholar 

  9. Chung, D., M. Cha, A. M. Guss, and J. Westpheling (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc. Natl. Acad. Sci. USA. 111: 8931–8936.

    CAS  PubMed  Google Scholar 

  10. Dien, B. S., M. A. Cotta, and T. W. Jeffries (2003) Bacteria engineered for fuel ethanol production: current status. Appl. Microbiol. Biotechnol. 63: 258–266.

    CAS  PubMed  Google Scholar 

  11. Zhang, X. Z. and Y. H. P. Zhang (2010) One-step production of biocommodities from lignocellulosic biomass by recombinant cellulolytic Bacillus subtilis: Opportunities and challenges. Eng. Life Sci. 10: 398–406.

    CAS  Google Scholar 

  12. Koppolu, V. and V. K. R. Vasigala (2016) Role of Escherichia coli in biofuel production. Microbiol. Insights. 9: 29–35.

    PubMed  PubMed Central  Google Scholar 

  13. Yomano, L. P., S. W. York, and L. O. Ingram (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J. Ind. Microbiol. Biotechnol. 20: 132–138.

    CAS  PubMed  Google Scholar 

  14. Sprenger, G. (1996) Carbohydrate metabolism in Zymomonas mobilis: a catabolic highway with some scenic routes. FEMS Microbiol. Lett. 145: 301–307.

    CAS  Google Scholar 

  15. Zabed, H., G. Faruq, J. N. Sahu, M. S. Azirun, R. Hashim, and A. Nasrulhaq Boyce (2014) Bioethanol production from fermentable sugar juice. ScientificWorldJournal. 2014: 957102.

    PubMed  PubMed Central  Google Scholar 

  16. Zhang, K., X. Lu, Y. Li, X. Jiang, L. Liu, and H. Wang (2019) New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl. Microbiol. Biotechnol. 103: 2087–2099.

    CAS  PubMed  Google Scholar 

  17. Wang, G.-J., Z. S. Wang, Y. W. Zhang, and Y. Z. Zhang (2012) Cloning and expression of amyE gene from Bacillus subtilis in Zymomonas mobilis and direct production of ethanol from soluble starch. Biotechnol. Bioprocess Eng. 17: 780–786.

    CAS  Google Scholar 

  18. Payton, M. A. (1984) Production of ethanol by thermophilic bacteria. Trends Biotechnol. 2: 153–158.

    CAS  Google Scholar 

  19. Akinosho, H., K. Yee, D. Close, and A. Ragauskas (2014) The emergence of Clostridium thermocellum as a high utility candidate for consolidated bioprocessing applications. Front Chem. 2: 66.

    PubMed  PubMed Central  Google Scholar 

  20. Romero, S., E. Merino, F. Bolívar, G. Gosset, and A. Martinez (2007) Metabolic engineering of Bacillus subtilis for ethanol production: lactate dehydrogenase plays a key role in fermentative metabolism. Appl. Environ. Microbiol. 73: 5190–5198.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Horinouchi, T., K. Tamaoka, C. Furusawa, N. Ono, S. Suzuki, T. Hirasawa, T. Yomo, and H. Shimizu (2010) Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genomics. 11: 579.

    PubMed  PubMed Central  Google Scholar 

  22. Lupino, K. M., K. A. Romano, M. J. Simons, J. T. Gregg, L. Panepinto, G. M. Cruz, L. Grajek, G. A. Caputo, M. J. Hickman, and G. B. Hecht (2018) A Recurrent Silent Mutation Implicates fecA in Ethanol Tolerance by Escherichia coli. BMC Microbiol. 18: 36.

    PubMed  PubMed Central  Google Scholar 

  23. Waegeman, H. and M. D. Mey (2012) Increasing recombinant protein production in E. coli by an alternative method to reduce acetate. pp. 127–144. In: M. Petre (eds.). Advances in Applied Biotechnology. In Tech Open, Rijeka, Croatia.

    Google Scholar 

  24. Idalia, V.-M. N. and F. Bernardo (2017) Escherichia coli as a model organism and its application in biotechnology. pp. 253–274. In: A. Samie (eds.). Recent Advances on Physiology, Pathogenesis and Biotechnological Applications. In Tech Open, Rijeka, Croatia.

    Google Scholar 

  25. Machado, D., M. J. Herrgård, I. and Rocha (2015) Modeling the contribution of allosteric regulation for flux control in the central carbon metabolism of E. coli. Front. Bioeng. Biotechnol. 3: 154.

    PubMed  PubMed Central  Google Scholar 

  26. Ingram, L. O., T. Conway, D. P. Clark, G. W. Sewell, and J. F. Preston (1987) Genetic engineering of ethanol production in Escherichia coli. Appl. Environ. Microbiol. 53: 2420–2425.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, H. (2011) Engineering Escherichia coli for co-production of acetaldehyde and hydrogen from glucose. Ph.D. Thesis. Iowa State University, Ames, Iowa, USA.

  28. Forster, A. H. and J. Gescher (2014) Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end product. Front. Bioeng. Biotechnol. 2: 16.

    PubMed  PubMed Central  Google Scholar 

  29. Ohta, K., D. S. Beall, J. P. Mejia, K. T. Shanmugam, and L. O. Ingram (1991) Genetic improvement of Escherichia. coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl. Environ. Microbiol. 57: 893–900.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, R., Y. Zhang, H. Hong, W. Lu, W. Zhang, M. Lin, and M. Chen (2010) Metabolic engineering of an ethanol tolerant Escherichia coli MG1565 for enhanced ethanol production from xylose and glucose. Afr. J. Biochem. Res. 4: 214–219.

    Google Scholar 

  31. Sanny, T., M. Arnaldos, S. A. Kunkel, K. R. Pagilla, and B. C. Stark (2010) Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl Microbiol Biotechnol. 88: 1103–1112.

    CAS  PubMed  Google Scholar 

  32. Abanoz, K., B. C. Stark, and M. Y. Akbas (2012) Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Lett. Appl. Microbiol. 55: 436–443.

    CAS  PubMed  Google Scholar 

  33. Sekar, R., H. D. Shin, and R. Chen (2011) Engineering Escherichia coli cells for cellobiose assimilation through a phosphorolytic mechanism. Appl. Environ. Microbiol. 78: 1611–1614.

    PubMed  Google Scholar 

  34. Gao, D., Y. Luan, Q. Wang, Q. Liang, and Q. Qi (2015) Construction of cellulose-utilizing Escherichia coli based on secretable cellulose. Microb. Cell Fact. 14: 159.

    PubMed  PubMed Central  Google Scholar 

  35. Ibrahim, E., K. D. Jones, E. N. Hosseny, and J. Escudero (2013) Molecular cloning and expression of cellulase and polygalacturonase genes in E. coli as a promising application for biofuel production. J. Pet. Environ. Biotechnol. 4: 147.

    Google Scholar 

  36. Ashwell, G., A. J. Wahba, and J. Hickman (1960) Uranic acid metabolism in bacteria. J. Biol. Chem. 235: 1559–1565.

    CAS  PubMed  Google Scholar 

  37. Munjal, N., K. Jawed, S. Wajid, and S. S. Yazdani (2015) A constitutive expression system for cellulase secretion in Escherichia coli and its use in bioethanol production. PLoS One. 10: e0119917.

    PubMed  PubMed Central  Google Scholar 

  38. Muñoz-Gutiérrez, I., R. Oropeza, G. Gosset, and A. Martinez (2012) Cell surface display of a β-glucosidase employing the type V secretion system on ethanologenic Escherichia coli for the fermentation of cellobiose to ethanol. J. Ind. Microbiol. Biotechnol. 39: 1141–1152.

    PubMed  Google Scholar 

  39. Ryu, S. and M. N. Karim (2011) A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates. Appl. Microbiol. Biotechnol. 91: 529–542.

    CAS  PubMed  Google Scholar 

  40. Ko, K. C., B. Lee, D. E. Cheong, Y. Han, J. H. Choi, and J. J. Song (2015) Bacterial cell surface display of a multifunctional cellulolytic enzyme screened from a bovine rumen metagenomic resource. J. Microbiol. Biotechnol. 25: 1835–1841.

    CAS  PubMed  Google Scholar 

  41. Shin, H. D., S. McClendon, T. Vo, and R. R. Chen (2010) Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel. Appl. Environ. Microbiol. 76: 8150–8159.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, X., D. Zhao, H. Qiu, F. Fan, S. Man, C. Bi, and X. Zhang (2017) The CRISPR/Cas9-facilitated multiplex pathway optimization (CFPO) technique and its application to improve the Escherichia coli xylose utilization pathway. Metab. Eng. 43: 37–45.

    CAS  PubMed  Google Scholar 

  43. Gawand, P., P. Hyland, A. Ekins, V. J. Martin, and R. Mahadevan (2013) Novel approach to engineer strains for simultaneous sugar utilization. Metab. Eng. 20: 63–72.

    CAS  PubMed  Google Scholar 

  44. Wang, X., E.-B. Goh, and H. R. Beller (2018) Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Microb. Cell Fact. 17: 12.

    PubMed  PubMed Central  Google Scholar 

  45. Choi, K. R. and S. Y. Lee (2016) CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34: 1180–1209.

    CAS  PubMed  Google Scholar 

  46. Wu, M. Y., L. Y. Sung, H. Li, C. H. Huang, and Y. C. Hu (2017) Combining CRISPR and CRISPRi systems for metabolic engineering of E. coli and 1,4-BDO biosynthesis. ACS Synth. Biol. 6: 2350–2361.

    CAS  PubMed  Google Scholar 

  47. Rossoni, L., R. Carr, S. Baxter, R. Cortis, T. Thorpe, G. Eastham, and G. Stephens (2018) Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway. Microbiology. 164: 287–298.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zingaro, K. A. and E. Terry Papoutsakis (2013) GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab. Eng. 15: 196–205.

    CAS  PubMed  Google Scholar 

  49. Mezzina, M. P., D. S. Álvarez, D. E. Egoburo, R. Díaz Peña, P. I. Nikel, and M. J. Pettinari (2017) A new player in the biorefineries field: phasin PhaP enhances tolerance to solvents and boosts ethanol and 1,3-propanediol synthesis in Escherichia coli. Appl. Environ. Microbiol. 83: e00662–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Abdelaal, A. S., A. M. Ageez, A. E. Abd El-Hadi, and N. A. Abdallah (2015) Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 3 Biotech. 5: 401–410.

    PubMed  Google Scholar 

  51. Horinouchi, T., T. Maeda, and C. Furusawa (2018) Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J. Microbiol. Biotechnol. 34: 157.

    PubMed  PubMed Central  Google Scholar 

  52. Alper, H. and G. Stephanopoulos (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9: 258–267.

    CAS  PubMed  Google Scholar 

  53. Chong, H. L. Huang, J. Yeow, I. Wang, H. Zhang, H. Song, and R. Jiang (2013) Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One. 8: e57628.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kurgan, G., L. A. Panyon, Y. Rodriguez-Sanchez, E. Pacheco, L. M. Nieves, R. Mann, D. R. Nielsen, and X. Wang (2019) Bioprospecting of native efflux pumps to enhance furfural tolerance in ethanologenic Escherichia coli. Appl. Environ. Microbiol. 85: e02985–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ibraheem, O. and B. K. Ndimba (2013) Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds. Int. J. Biol. Sci. 9: 598–612.

    PubMed  PubMed Central  Google Scholar 

  56. Wang, X., L. P. Yomano, J. Y. Lee, S. W. York, H. Zheng, M. T. Mullinnix, K. T. Shanmugam, and L. O. Ingram (2013) Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proc. Natl. Acad. Sci. USA. 110: 4021–4026.

    CAS  PubMed  Google Scholar 

  57. Ofosu-Appiah, C., H. D. Zakpaa, E. Mak-Mensah, and J. A. Bentil (2016) Evaluation of ethanol production from pito mash using Zymomonas mobilis and Saccharomyces cerevisiae. Afr. J. Biotechnol. 15: 1613–1620.

    CAS  Google Scholar 

  58. Sivasakthivelan, P., P. Saranraj, and S. Sivasakthi (2015) Production of ethanol by Zymomonas mobilis and Saccharomyces cerevisiae using sunflower head wastes — a comparative study. Am-Euras. J. Sci. Res. 10: 307–315.

    Google Scholar 

  59. Pallach, M., R. Marchetti, F. Di Lorenzo, A. Fabozzi, E. Giraud, D. Gully, L. Paduano, A. Molinaro, G. D’Errico, and A. Silipo (2018) Zymomonas mobilis exopolysaccharide structure and role in high ethanol tolerance. Carbohydr Polym. 201: 293–299.

    CAS  PubMed  Google Scholar 

  60. Carreón-Rodríguez, O. E., R. M. Gutiérrez-Ríos, J. L. Acosta, A. Martinez, and M. A. Cevallos (2019) Phenotypic and genomic analysis of Zymomonas mobilis ZM4 mutants with enhanced ethanol tolerance. Biotechnol. Rep. 23: e00328

    Google Scholar 

  61. Deanda, K., M. Zhang, C. Eddy, and S. Picataggio (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62: 4465–4470.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang, M., C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science. 267: 240–243.

    CAS  PubMed  Google Scholar 

  63. Jung, S. K., V. Parisutham, S. H. Jeong, and S. K. Lee (2012) Heterologous expression of plant cell wall degrading enzymes for effective production of cellulosic biofuels. J. Biomed. Biotechnol. 2012: 405842.

    PubMed  PubMed Central  Google Scholar 

  64. Brestic-Goachet, N., P. Gunasekaran, B. Cami, and J. C. Baratti (1989) Transfer and expression of an Erwinia chrysanthemi cellulase gene in Zymomonas mobilis. J. Gen. Microbiol. 135: 893–902.

    CAS  Google Scholar 

  65. Linger, J. G., W. S. Adney, and A. Darzins (2010) Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl. Environ. Microbiol. 76: 6360–6369.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. He, M. X., H. Feng, F. Bai, Y. Li, X. Liu, and Y. Z. Zhang (2009) Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. Afr. J. Microbiol. Res. 3: 721–726.

    CAS  Google Scholar 

  67. Wang, G., M. He, and Y. Zhang (2012) Co-expression of α-amylase and Glucoamylase in Zymomonas mobilis and direct ethanol production from sweet potato. Chin. J. Appl. Environ. Biol. 18: 785–790.

    CAS  Google Scholar 

  68. Cao, Q., T. Li, H. Shao, X. Tan, and Y. Zhang (2016) Three new shuttle vectors for heterologous expression in Zymomonas mobilis. Electron. J. Biotechnol. 19: 33–40.

    CAS  Google Scholar 

  69. Yang, S., M. L. Land, D. M. Klingeman, D. A. Pelletier, T. Y. Lu, S. L. Martin, H. B. Guo, J. C. Smith, and S. D. Brown (2010) Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 107: 10395–10400.

    CAS  PubMed  Google Scholar 

  70. Kim, I. S., K. D. Barrow, and P. L. Rogers (2000) Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4 (pZB5). Appl. Biochem. Biotechnol. 84: 357–370.

    PubMed  Google Scholar 

  71. Skerker, J. M., D. Leon, M. N. Price, J. S. Mar, D. R. Tarjan, K. M. Wetmore, A. M. Deutschbauer, J. K. Baumohl, S. Bauer, A. B. Ibáñez, V. D. Mitchell, C. H. Wu, P. Hu, T. Hazen, and A. P. Arkin (2013) Dissecting a complex chemical stress: chemogenomic profiling of plant hydrolysates. Mol. Syst. Biol. 9: 674.

    PubMed  PubMed Central  Google Scholar 

  72. Liu, Y. F., C. W. Hsieh, Y. S. Chang, and B. S. Wung (2017) Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuous adaptation. BMC Biotechnol. 17: 63.

    PubMed  PubMed Central  Google Scholar 

  73. Ottenheim, C., M. Nawrath, and J. C. Wu (2018) Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Bioresour. Bioprocess. 5: 12.

    Google Scholar 

  74. Wu, B., H. Qin, Y. Yang, G. Duan, S. Yang, F. Xin, C. Zhao, H. Shao, Y. Wang, Q. Zhu, F. Tan, G. Hu, and M. He (2019) Engineered Zymomonas mobilis tolerant to acetic acid and low pH via multiplex atmospheric and room temperature plasma mutagenesis. Biotechnol. Biofuels. 12: 10.

    PubMed  PubMed Central  Google Scholar 

  75. Lo, J., D. G. Olson, S. J.-L. Murphy, L. Tian, S. Hon, A. Lanahan, A. M. Guss, and L. R. Lynd (2017) Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab. Eng. 39: 71–79.

    CAS  PubMed  Google Scholar 

  76. Rydzak, T., L. R. Lynd, and A. M. Guss (2015) Elimination of formate production in Clostridium thermocellum. J. Ind. Microbiol. Biotechnol. 42: 1263–1272.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Biswas, R., S. Prabhu, L. R. Lynd, and A. M. Guss (2014) Increase in ethanol yield via elimination of lactate production in an ethanol-tolerant mutant of Clostridium thermocellum. PLoS One. 9: e86389.

    PubMed  PubMed Central  Google Scholar 

  78. Biswas, R., T. Zheng, D. G. Olson, L. R. Lynd, and A. M. Guss (2015) Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol. Biofuels. 8: 20.

    PubMed  PubMed Central  Google Scholar 

  79. Lamed, R. and J. G. Zeikus (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J. Bacteriol. 144: 569–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Deng, Y., D. G. Olson, J. Zhou, C. D. Herring, A. Joe Shaw, and L. R. Lynd (2013) Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab. Eng. 15: 151–158.

    CAS  PubMed  Google Scholar 

  81. Xiong, W., L. H. Reyes, W. E. Michener, P. C. Maness, and K. J. Chou (2018) Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115: 1755–1763.

    CAS  PubMed  Google Scholar 

  82. Tian, L., S. J. Perot, S. Hon, J. Zhou, X. Liang, J. T. Bouvier, A. M. Guss, D. G. Olson, and L. R. Lynd (2017) Enhanced ethanol formation by Clostridium thermocellum via pyruvate decarboxylase. Biotechnol. Biofuels. 16: 171.

    Google Scholar 

  83. Hon, S., E. K. Holwerda, R. S. Worthen, M. I. Maloney, L. Tian, J. Cui, P. P. Lin, L. R. Lynd, and D. G. Olson (2018) Expressing the Thermoanaerobacterium saccharolyticum pforA in engineered Clostridium thermocellum improves ethanol production. Biotechnol. Biofuels. 11: 242.

    PubMed  PubMed Central  Google Scholar 

  84. Shao, X., B. Raman, M. Zhu, J. R. Mielenz, S. D. Brown, A. M. Guss, and L. R. Lynd (2011) Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl. Microbiol. Biotechnol. 92: 641–652.

    CAS  PubMed  Google Scholar 

  85. Rani, K. S., M. V. Swamy, D. Sunitha, D. Haritha, and G. Seenayya (1996) Improved ethanol tolerance and production in strains of Clostridium thermocellum. World J. Microbiol. Biotechnol. 12: 57–60.

    CAS  PubMed  Google Scholar 

  86. Linville, J. L., M. Rodriguez Jr., M. Land, M. H. Syed, N. L. Engle, T. J. Tschaplinski, J. R. Mielenz, and C. D. Cox (2013) Industrial robustness: understanding the mechanism of tolerance for the populus hydrolysate-tolerant mutant strain of Clostridium thermocellum. PLoS One. 8: e78829.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Brown, S. D., A. M. Guss, T. V. Karpinets, J. M. Parks, N. Smolin, S. Yang, M. L. Land, D. M. Klingeman, A. Bhandiwad, M. Rodriguez Jr., B. Raman, X. Shao, J. R. Mielenz, J. C. Smith, M. Keller, and L. R. Lynd (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. USA. 108: 13752–13757.

    CAS  PubMed  Google Scholar 

  88. Tian, L., N. D. Cervenka, A. M. Low, D. G. Olson, and L. R. Lynd (2019) A mutation in the AdhE alcohol dehydrogenase of Clostridium thermocellum increases tolerance to several primary alcohols, including isobutanol, n-butanol and ethanol. Sci. Rep. 9: 1736.

    PubMed  PubMed Central  Google Scholar 

  89. Williams, T. I., J. C. Combs, B. C. Lynn, and H. J. Strobel (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl. Microbiol. Biotechnol. 74: 422–432.

    CAS  PubMed  Google Scholar 

  90. Timmons, M. D., B. L. Knutson, S. E. Nokes, H. J. Strobel, and B. C. Lynn (2009) Analysis of composition and structure of Clostridium thermocellum membranes from wild-type and ethanol-adapted strains. Appl. Microbiol. Biotechnol. 82: 929–939.

    CAS  PubMed  Google Scholar 

  91. Zhu, X., J. Cui, Y. Feng, Y. Fa, J. Zhang, and Q. Cui (2013) Metabolic adaption of ethanol-tolerant Clostridium thermocellum. PLoS One. 8: e70631.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yee, K. L., M. Rodriguez Jr., O. A. Thompson, C. Fu, Z. Y. Wang, B. H. Davison, and J. R. Mielenz (2014) Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain. Biotechnol. Biofuels. 7: 75.

    PubMed  PubMed Central  Google Scholar 

  93. Singh, N., A. S. Mathur, R. P. Gupta, C. J. Barrow, D. Tuli, and M. Puri (2018) Enhanced cellulosic ethanol production via consolidated bioprocessing by Clostridium thermocellum ATCC 31924. Bioresour. Technol. 250: 860–867.

    CAS  PubMed  Google Scholar 

  94. Singh, N., A. S. Mathur, C. J. Barrow, D. K. Tuli, R. P. Gupta, and M. Puri (2019) Influence of substrate loadings on the consolidated bioprocessing of rice straw and sugarcane bagasse biomass using Ruminiclostridium thermocellum. Bioresour Technol. Rep. 7: 100138.

    Google Scholar 

  95. Liu, S. L. and K. Du (2012) Enhanced expression of an endoglucanase in Bacillus subtilis by using the sucrose-inducible sacB promoter and improved properties of the recombinant enzyme. Protein Expr. Purif. 83: 164–168.

    CAS  PubMed  Google Scholar 

  96. Wu, X. C., W. Lee, L. Tran, and S. L. Wong (1991) Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952–4958.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wong, S. L. (1989) Development of an inducible and enhancible expression and secretion system in Bacillus subtilis. Gene. 83: 215–223.

    CAS  PubMed  Google Scholar 

  98. Heng, C., Z. Chen, L. Du, and F. Lu (2005) Expression and secretion of an acid-stable alpha-amylase gene in Bacillus Subtilis by SacB promoter and signal peptide. Biotechnol. Lett. 21: 1731–1737.

    Google Scholar 

  99. Shaw, A. J., S. F. Covalla, B. B. Miller, B. T. Firliet, D. A. Hogsett, and C. D. Herring (2012) Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab. Eng. 14: 528–532.

    PubMed  Google Scholar 

  100. Shaw, A. J., K. K. Podkaminer, S. G. Desai, J. S. Bardsley, S. R. Rogers, P. G. Thorne, D. A. Hogsett, and L. R. Lynd (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc. Natl. Acad. Sci. USA. 105: 13769–13774.

    CAS  PubMed  Google Scholar 

  101. Herring, C. D., W. R. Kenealy, A. J. Shaw, S. F. Covalla, D. G. Olson, J. Zhang, W. R. Sillers, V. Tsakraklides, J. S. Bardsley, S. R. Rogers, P. G. Thorne, J. P. Johnson, A. Foster, I. D. Shikhare, D. M. Klingeman, S. D. Brown, B. H. Davison, L. R. Lynd, and D. A. Hogsett (2016) Strain and bioprocess improvement of a thermophilic anaerobe for the production of ethanol from wood. Biotechnol. Biofuels. 9: 125.

    PubMed  PubMed Central  Google Scholar 

  102. Currie, D. H., C. D. Herring, A. M. Guss, D. G. Olson, D. A. Hogsett, and L. R. Lynd (2013) Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum. Biotechnol. Biofuels. 6: 32.

    CAS  Google Scholar 

  103. Jouzani, G. S. and M. J. Taherzadeh (2015) Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Res. J. 5: 152–195.

    Google Scholar 

  104. Cripps, R. E., K. Eley, D. J. Leak, B. Rudd, M. Taylor, M. Todd, S. Boakes, S. Martin, and T. Atkinson (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high yield ethanol production. Metab. Eng. 11: 398–408.

    CAS  PubMed  Google Scholar 

  105. Zhou, J., K. Wu, and C. V. Rao (2016) Evolutionary engineering of Geobacillus thermoglucosidasius for improved ethanol production. Biotechnol. Bioeng. 113: 2156–2167.

    CAS  PubMed  Google Scholar 

  106. Cha, M., D. Chung, J. G. Elkins, A. M. Guss, and J. Westpheling (2013) Metabolic engineering of Caldicellulosiruptor bescii yields increased hydrogen production from lignocellulosic biomass. Biotechnol. Biofuels. 6: 85.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Williams-Rhaesa, A. M., G. M. Rubinstein, I. M. Scott, G. L. Lipscomb, F. L. Poole, R. M. Kelly, and M. W. W. Adams (2018) Engineering redox-balanced ethanol production in the cellulolytic and extremely thermophilic bacterium, Caldicellulosiruptor bescii. Metab. Eng. Commun. 7: e00073.

    PubMed  PubMed Central  Google Scholar 

  108. Li, Y., T. J. Tschaplinski, N. L. Engle, C. Y. Hamilton, M. Rodriguez, J. C. Liao, C. W. Schadt, A. M. Guss, Y. Yang, and D. E. Graham (2012) Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. Biotechnol. Biofuels. 5: 2.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Desvaux, M. (2005) Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29: 741–764.

    CAS  PubMed  Google Scholar 

  110. Guedon, E., M. Desvaux, and H. Petitdemange (2002) Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68: 53–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Singh, N., A. S. Mathur, D. K. Tuli, R. P. Gupta, C. J. Barrow, and M. Puri (2017) Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol. Biofuels. 10: 73.

    PubMed  PubMed Central  Google Scholar 

  112. Mbaneme-Smith, V. and M. S. Chinn (2015) Consolidated bioprocessing for biofuel production: recent advances. Energy. Emiss. Control. Technol. 3: 23–44.

    Google Scholar 

  113. Lin, Y. and S. Tanaka (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627–642.

    CAS  PubMed  Google Scholar 

  114. Fisher, A. K., B. G. Freedman, D. R. Bevan, and R. S. Senger (2014) A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput. Struct. Biotechnol. J. 11: 91–99.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

SB is thankful to Visva-Bharati University for providing UGC Non-Net research fellowship. GM is thankful to DBT-HRD program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Roy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Mishra, G. & Roy, A. Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass. Biotechnol Bioproc E 24, 713–733 (2019). https://doi.org/10.1007/s12257-019-0134-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0134-2

Keywords

Navigation