Skip to main content
Log in

Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A gram-negative, aerobic, obligatory halophilic, curved-to-spiral rod-shaped, uni- or bi-polar flagellated motile bacterium 139Z-12T was isolated from water samples collected from Southern Ocean surrounding Antarctica as part of the Indo-German iron fertilization experiment “LOHAFEX.” The bacterium was positive for catalase, oxidase, and gelatinase, with C18:1ω7c (20.1 %), C16:0 (7.3 %), C16:1ω7c (28.9 %), and C12:0 (19.0 %) as the predominant fatty acids, phosphatidylglycerol, and phosphatidylethanolamine as major lipids and Q-10 as the major respiratory quinone. DNA G + C content (mol%) of strain 139Z-12T was 53.0. Both BLAST and EzTaxon identified strain 139Z-12T as affiliated species of the genus Thalassospira with 16S rRNA gene sequence similarities ranging from 97.9 to 99.9 %. Based on above characteristics, strain 139Z-12T was assigned to the genus Thalassospira. Since strain 139Z-12T shared a DNA–DNA similarity of <70.0 % with members of the genus Thalassospira, 139Z-12T was identified as a novel species of the genus and named as Thalassospira lohafexi sp. nov. In addition to this, strain 139Z-12T, based on REP-PCR, delineated at a similarity coefficient of <0.67 from other species of the genus Thalassospira and also exhibited a MLSA distance of <95.5 %, a value less than the interspecies distance determined previously for the genus Thalassospira, further supporting the species status. In addition, species rank was further confirmed by other polyphasic characteristics. The type strain of Thalassospira lohafexi sp. nov. is 139Z-12T (KCTC 32347T = LMG 27449T = MCC 2233T = NBRC 110402T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Atlas RM, Parks LC (1993) Handbook of microbiological media. CRC Press, Inc., London

    Google Scholar 

  • Bertani G (1952) Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    Google Scholar 

  • Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8:2673–2701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blaxter JHS, Southward AJ (1998) Advances in marine biology 32: the Biogeo-graphy of the Oceans. Academic Press, San Diego 1997,596. Intern Rev Hydrobiol 83: 264–265

  • Chattopadhyay S, Farkya S, Srivastava AK, Bisaria VS (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol Bioprocess Eng 7:138–149

    Article  CAS  Google Scholar 

  • Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261

    Article  CAS  PubMed  Google Scholar 

  • Cowan ST, Steel KJ (1965) Manual for the identification of medical bacteria. Cambridge University Press, London

    Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243

    Article  CAS  PubMed  Google Scholar 

  • Hassler CS, Schoemannd V, Nicholsb CM, Butlera ECV, Boydg PW (2011) Saccharides enhance iron bioavailability to Southern Ocean phytoplankton. Proc Natl Acad Sci 108:1076–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ianora A, Miralto A (2010) Toxigenic effects of diatoms on grazers, phytoplankton and other microbes: a review. Ecotoxicol 19:493–511

    Article  CAS  Google Scholar 

  • Inan K, Bektas Y, Canakci S, Belduz AO (2011) Use of rpoB sequences and rep-PCR for phylogenetic study if Anoxybacillus species. J Microbiol 49:782–790

    Article  PubMed  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kodama Y, Stiknowati L, Ueki A, Ueki K, Watanabe K (2008) Thalassospira tepidiphila sp. nov., a polycyclic aromatic hydrocarbon degrading bacterium isolated from seawater. Int J Syst Evol Microbiol 58:711–715

    Article  CAS  PubMed  Google Scholar 

  • Komagata K, Suzuki K (1987) Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207

    CAS  Google Scholar 

  • Lai Q, Liu Y, Yuan J, Du J, Wang L, Sun F, Shao Z (2014) Multilocus sequence analysis for assessment of phylogenetic diversity and biogeography in Thalassospira bacteria from diverse marine environments. PLoS One 9:e106353. doi:10.1371/journal.pone.0106353.eCollection

    Article  PubMed Central  PubMed  Google Scholar 

  • Lanyı B (1987) Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67

    Google Scholar 

  • Liu C, Wu Y, Li L, Ma Y, Shao Z (2007) Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 57:316–320

    Article  CAS  PubMed  Google Scholar 

  • López-López A, Pujalte MJ, Benlloch S, Mata-Roig M, Rosselló-Mora R, Garay E, Rodríguez-Valera F (2002) Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α-Proteobacteria. Int J Syst Evol Microbiol 52:1277–1283

    Article  PubMed  Google Scholar 

  • Lyman J, Fleming RH (1940) Composition of sea water. J Mar Res 3:134–146

    CAS  Google Scholar 

  • MacFaddin JF (1985) Media for isolation, cultivation, identification, maintenance of medical bacteria, vol 1. Williams & Wilkins, Baltimore

    Google Scholar 

  • Marmur J (1961) A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Article  CAS  PubMed  Google Scholar 

  • Marques ASA, Marchaison A, Gardan L, Samson R (2008) BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringaeP. viridiflava group. Genet Mol Biol 31:106–115

    CAS  Google Scholar 

  • Martin JH, Coale KH, Johnson KS, Fitzwater SE, Gordon RM et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    Article  CAS  Google Scholar 

  • Masco L, Huys G, Gevers D, Verbrugghen L, Swings J (2003) Identification of Bifidobacterium species using rep-PCR fingerprinting system. Appl Microbiol 26:557–563

    Article  CAS  Google Scholar 

  • Nayak BS, Badgley B, Harwood VJ (2011) Comparison of genotypic and phylogenetic relationships of environmental Enterococcus isolates by BOX-PCR typing and 16S rRNA gene sequencing. Appl Environ Microbiol 77:5050–5055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nogi Y, Yoshizumi M, Miyazaki M (2014) Thalassospira povalilytica sp. nov., a polyvinyl alcohol-degrading marine bacterium. Int J Syst Evol Microbiol 64:1149–1153

    Article  CAS  PubMed  Google Scholar 

  • Pavel AB, Vasile CI (2012) PyElph—a software tool for gel images analysis and phylogenetics. BMC Bioinform 13:9–14

    Article  Google Scholar 

  • Plotnikova EG, Anan’ina LN, Krausova VI, Ariskina EV, Prisyazhnaya NV, Lebedev AT, Demakov VA, Evtushenko LI (2011) Thalassospira permensis sp. nov., a new terrestrial halotolerant bacterium isolated from a naphthalene-utilizing microbial consortium. Mikrobiologiia 80:691–699

    CAS  PubMed  Google Scholar 

  • Pulicherla KK, Kumar PS, Manideep K, Rekha VP, Ghosh M, Rao KR (2013) Statistical approach for the enhanced production of cold-active β-galactosidase from Thalassospira frigidphilosprofundus: a novel marine psychrophile from deep waters of bay of bengal. Prep Biochem Biotechnol 43:766–780

    Article  CAS  PubMed  Google Scholar 

  • Rasschaert G, Houf K, Imberechts H, Grijspeerdt K, De Zutter L, Heyndrickx M (2005) Comparison of five repetitive-sequence based PCR typing methods for molecular discrimination of Salmonella enterica isolates. J Clin Microbiol 43:3615–3623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy GSN, Garcia-Pichel F (2015) Description of Pseudomonas asuensis sp. nov. from Biological Soil Crusts in the Colorado Plateau. USA J Microbiol 53:6–13

    Article  CAS  Google Scholar 

  • Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley Antarctica. Int J Syst Evol Microbiol 50:1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Nagy M, Garcia-Pichel F (2006) Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 56:51-58

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Uttam A, Shivaji S (2008) Bacillus cecembensis sp. nov. a bacterium isolated from the Pindari glacier of the Himalayan mountain ranges India. Int J Syst Evol Microbiol 58:2330–2335

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Pradhan S, Manorama R, Shivaji S (2010) Cryobacterium roopkundense sp. nov., a psychrophilic bacterium from Roopkund Glacier of the Himalayan mountain ranges. Int J Syst Evol Microbiol 60:866–870

    Article  CAS  PubMed  Google Scholar 

  • Reddy GSN, Manasa BP, Singh SK, Shivaji S et al (2013) Paenisporosarcina indica sp. nov., a psychrophilic bacterium from Pindari Glacier of the Himalayan mountain ranges and reclassification of Sporosarcina antarctica Yu et al. 2008 as Paenisporosarcina antarctica comb. nov. and emended description of the genus Paenisporosarcina. Int J Syst Evol Microbiol 63:2927–2933

    Article  CAS  PubMed  Google Scholar 

  • Rinehart KL (1992) Secondary metabolites from marine organisms. Ciba Found Symp 171:236–249

    CAS  PubMed  Google Scholar 

  • Rohlf FJ (1993) NTSYS-pc v. 1.8., Numerical taxonomy and multivariate analysis system, 191. Applied Biostatistics Inc, Setauket

    Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. M IDI Technical Note 101. MIDI Inc.,Newark, DE, USA

  • Scholz HC, Vergnaud G (2013) Molecular characterisation of Brucella species. Rev Sci Tech 32:149–162

    CAS  PubMed  Google Scholar 

  • Sharp JH (1977) Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol Oceanogr 22:381–399

    Article  CAS  Google Scholar 

  • Shivaji S, Reddy GSN (2014) Phylogenetic analyses of the genus Glaciecola: emended description of the genus Glaciecola, transfer of Glaciecola mesophila, G. agarilytica, G. aquimarina, G. arctica, G. chathamensis, G. polaris and G. psychrophila to the genus Paraglaciecola gen. nov. as Paraglaciecola mesophila comb. nov., P. agarilytica comb. nov., P. aquimarina comb. nov., P. arctica comb. nov., P. chathamensis comb. nov., P. polaris comb. nov. and P. psychrophila comb. nov., and description of Paraglaciecola oceanifecundans sp. nov., isolated from the Southern Ocean. Int J Syst Evol Microbiol 64:3264–3275

    Article  CAS  PubMed  Google Scholar 

  • Shivaji S, Rao NS, Saisree I, Sheth V, Reddy GSN, Bhargava PM (1988) Isolation and identification of Micrococcus roseus and Planococcus sp. from Schirmacher oasis Antarctica. J Biosci 13:409–414

    Article  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  • Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  • Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thiele S, Fuchs BM, Ramaiah N, Amann R (2012) Microbial community response during the iron fertilization experiment LOHAFEX. Appl Environ Microbiol 78:8803–8812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsubouchi T, Ohta Y, Haga T, Usui K, Shimane Y, Mori K, Tanizaki A, Adachi A, Kobayashi K, Yukawa K, Takagi E, Tame A, Uematsu K, Maruyama T, Hatada Y (2014) Thalassospira alkalitolerans sp. nov. and Thalassospira mesophila sp. nov., isolated from a decaying bamboo sunken in the marine environment, and emended description of the genus Thalassospira. Int J Syst Evol Microbiol 64:107–115

    Article  CAS  PubMed  Google Scholar 

  • Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genome fingerprinting of bacteria using repetitive sequence based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  • Zhao B, Wang H, Mao X, Li R (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Wang H, Li R, Mao X (2010) Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 60:1125–1129

    Article  CAS  PubMed  Google Scholar 

  • ZoBell CE (1941) Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4:42–75

    Google Scholar 

Download references

Acknowledgments

We acknowledge Council for Scientific and Industrial Research (CSIR), India for funding LOHAFEX experiment and Dr S. W. A. Naqvi of CSIR-NIO for coordinating the activities of the LOHAFEX network project. Our special thanks to the Captain and Crew of RV Polarstern for their support. Author acknowledges Prof. Yuichi Nogi, JAMSTEC, Japan and NITE Biological Resource Center (NBRC) for providing strains Thalassospira povalilytica and Thalassospira permensis respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundlapally Sathyanarayana Reddy.

Additional information

Communicated by Erko Stackebrandt.

GenBank/EMBL accession numbers for the 16S rRNA gene sequence of Thalassospira lohafexi sp. nov. 139Z-12T is GU584152. GenBank/EMBL accession numbers for the gene sequences, in the order acsA, aroE, mutL, rpoD, and trpB, of strain 139Z-12T are KP231597, KP231598, KP231599, KP231600, and KP231601. GenBank/EMBL accession numbers for the gene sequences, in the order acsA, aroE, gyrB, mutL, rpoD, and trpB, of Thalassospira povalilytica Zumi 95T are KP231602, KP231603, KP231604, KP231605, KP231606, and KP231607.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaji, S., Sathyanarayana Reddy, G., Sundareswaran, V.R. et al. Description of Thalassospira lohafexi sp. nov., isolated from Southern Ocean, Antarctica. Arch Microbiol 197, 627–637 (2015). https://doi.org/10.1007/s00203-015-1092-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-015-1092-5

Keywords

Navigation