Skip to main content
Log in

Description of Pseudomonas asuensis sp. nov. from biological soil crusts in the Colorado plateau, United States of America

  • Microbial Systematics and Evolutionary Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A Gram-negative, aerobic, non spore-forming, non-motile, rod-shaped, yellow pigmented bacterium CP155-2T was isolated from a biological soil crusts sample collected in the Colorado plateau, USA and subjected to polyphasic taxonomic characterization. Strain CP155-2T contained summed feature 3 (C16:1 ω5c/C16:1 ω7c) and C18:1 ω7c as major fatty acids and diphosphatidylglycerol (DPG) along with phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) as major polar lipids. Based on these characteristics CP155-2T was assigned to the genus Pseudomonas. Phylogenetic analysis based on 16S rRNA gene sequence further confirmed the affiliation of CP155-2T to the genus Pseudomonas and showed a 16S rRNA gene sequence similarity of less than 98.7% with already described species of the genus. Pseudomonas luteola, Pseudomonas zeshuii, and Pseudomonas duriflava were identified as the closest species of the genus Pseudomonas with 16S rRNA gene sequence similarities of 98.7%, 98.6%, and 96.9%, respectively. The values for DNA¨CDNA relatedness between CP155-2T and Pseudomonas luteola and Pseudomonas zeshuii were 23% and 14% respectively a value below the 70% threshold value, indicating that strain CP155-2T belongs to a novel taxon of the genus Pseudomonas lineage. The novel taxon status was strengthened by a number of phenotypic differences wherein CP155-2T was positive for oxidase, negative for gelatin hydrolysis, could utilize D-cellobiose, D-raffinose, L-rhamnose, D-sorbitol but not L-aspartic acid and L-glutamic acid. Based on the collective differences strain CP155–2T exhibited, it was identified as a novel species and the name Pseudomonas asuensis sp. nov. was proposed. The type strain of Pseudomonas asuensis sp. nov. is CP155–2T (DSM 17866T =ATCC BAA-1264T =JCM13501T =KCTC 32484T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aasen, A.J., Francis, G.W., and Liaaen-Jensen, S. 1969. Bacterial Carotenoids XXIX. The carotenoids of two yellow halophilic cocci including a new glycosidic methyl apo-lycopenoate. Acta. Chem. Scand. 23, 2605–2615.

    Article  CAS  Google Scholar 

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Anzai, Y., Kim, H., Park, J.Y., Wakabayashi, H., and Oyaizu, H. 2000. Phylogenetic affiliation of the Pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50, 1563–1589.

    Article  CAS  PubMed  Google Scholar 

  • Anzai, Y., Kudo, Y., and Oyaizu, H. 1997. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int. J. Syst. Bacteriol. 47, 249–251.

    Article  CAS  PubMed  Google Scholar 

  • Arrage, A.A., Phelps, T.J., Bennot, R.E., and White, D.C. 1993. Survival of surface microorganisms exposed to UV radiation and hydrogen peroxide. Appl. Environ. Microbiol. 59, 3545–3550.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arulselvi, P.I., Umamaheswari, S., Sharma, R.G., Karthik, C., and Jayakrishna, C. 2014. Screening of yellow pigment producing bacterial isolates from various eco-climatic areas and analysis of the carotenoid produced by the isolate. J. Food Process Technol. 5, 1.

    Google Scholar 

  • Atlas, R.M. and Parks, L.C. 1993. Handbook of Microbiological Media. CRC Press, Inc. London.

    Google Scholar 

  • Belnap, J. 1993. Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Naturalist 53, 89–95.

    Google Scholar 

  • Bertani, G. 1952. Studies on Lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62, 293–300.

    Google Scholar 

  • Brempong, A.S. and Aferi, N.K. 2014. Isolation of phosphate solubilizing bacteria from tropical soil. Global Advanced Research Journal of Agricultural Science 3, 8–15.

    Google Scholar 

  • Chandra, T.S. and Shethna, Y.I. 1975. Isolation and characterization of some new oxalate-decomposing bacteria. Antonie van Leeuwenhoek 41, 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, S.T. and Steel, K.J. 1965. Manual for the identification of medical bacteria. London: Cambridge University Press.

    Google Scholar 

  • Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791.

    Article  Google Scholar 

  • Feng, Z., Zhang, J., Huang, X., Zhang, J., Chen, M., and Li, S. 2012. Pseudomonas zeshuii sp. nov., isolated from herbicide-contaminated soil. Int. J. Syst. Evol. Microbiol. 62, 2608–2612.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel, F., Johnson, S.L., Youngkin, D., and Belnap, J. 2003. Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado plateau. Microb. Ecol. 46, 312–321.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington D.C., USA.

    Google Scholar 

  • Holmes, B., Steigerwalt, A.G., Weaver, R.E., and Brenner, D.J. 1987. Chryseomonas luteola comb. nov. and Flavimonas oryzihabitans gen. nov., comb. nov., Pseudomonas-like species from human clinical specimens and formerly known, respectively, as groups Ve-1 and Ve-2. Int. J. Syst. Bacteriol. 37, 245–250.

    Article  Google Scholar 

  • Kaiser, P., Surmann, P., Vallentin, G., and Fuhrmann, H. 2007. A small-scale method for quantitation of carotenoids in bacteria and yeasts. J. Microbiol. Methods 70, 142–149.

    Article  CAS  PubMed  Google Scholar 

  • Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon: a prokaryotic 16S rRNA Gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kodama, K., Kimura, N., and Komagata, K. 1985. Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int. J. Syst. Bacteriol. 35, 467–474.

    Article  CAS  Google Scholar 

  • Komagata, K. and Suzuki, K. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.

    Article  CAS  Google Scholar 

  • Lanyi, B. 1987. Classical and rapid identification methods for medically important bacteria. Methods Microbiol. 19, 1–67.

    Article  CAS  Google Scholar 

  • Lapage, S., Shelton, J., and Mitchell, T. 1970, Media for isolationcultivation-identification-maintenance of medical bacteria, Vol. I, Williams and. Wilkins, Baltimore. Methods in Microbiology, In Norris, J. and Ribbons D. (eds.), Vol. 3A, Academic Press, London.

  • Lee, L.J., Lee, H.J., Jang, G.S., Yu, J.M., Cha, J.Y., Kim, S.J., Lee, E.B., and Kim, M.K. 2013. Deinococcus swuensis sp. nov., a gammaradiation-resistant bacterium isolated from soil. J. Microbiol. 51, 305–311.

    Article  CAS  PubMed  Google Scholar 

  • Li, E., Hamm, C.M., Gulati, A.S., Sartor, R.B., Chen, H., Wu, X., Zhang, T., Rohlf, F.J., Zhu, W., Gu, C., et al. 2012. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One 7, E26284.

    Google Scholar 

  • Liu, R., Liu, H., Feng, H., Wang, X., Zhang, C.X., Zhang, K.Y., and Lai, R. 2008. Pseudomonas duriflava sp. nov., isolated from a desert soil. Int. J. Syst. Evol. Microbiol. 58, 1404–1408.

    Article  CAS  PubMed  Google Scholar 

  • MacFaddin, J.F. 1985. Media for isolation, cultivation, identification, maintenance of medical bacteria, Vol.1, Williams & Wilkins, Baltimore.

  • Marmur, J. 1961. Procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3, 208–218.

    Article  CAS  Google Scholar 

  • Migula, W. 1984. Über ein neues system der bakterien. arb bakteriol Inst Karlsruhe 1, 235–238 (in German).

    Google Scholar 

  • Nagy, M., Pérez, A., and Garcia-Pichel, F. 2005. The prokaryotic diversity of biological soil crusts in the Sonoran desert (Organ Pipe Cactus National Monument, AZ). FEMS Microb. Ecol. 54, 233–245.

    Article  CAS  Google Scholar 

  • Nübel, U., Garcia-Pichel, F., and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332.

    PubMed Central  PubMed  Google Scholar 

  • Oyaizu, H. and Komagata, K. 1983. Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J. Gen. Appl. Microbiol. 29, 17–40.

    Article  CAS  Google Scholar 

  • Palleroni, N.J. 1984. Genus I. Pseudomonas Migula 1894. Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 141–199. In Krieg, N.R. and Holt, J.G. (eds.) Baltimore: Williams & Wilkins.

    Google Scholar 

  • Pandey, K.K., Mayilraj, S., and Chakrabarti, T. 2002. Pseudomonas indica sp. nov., a novel butane utilizing species. Int. J. Syst. Evol. Microbiol. 52, 1559–1567.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Fons, L., Steiger, S., Khaneja, R., Bramley, P.M., Cutting, S.M., Sandmann, G., and Fraser, P.D. 2011. Identification and the developmental formation of carotenoid pigments in the yellow/orange Bacillus spore-formers. Biochim. Biophys. Acta. 1811, 177–185.

    Article  CAS  PubMed  Google Scholar 

  • Rainey, F.A., Ray, K., Ferreira, M., Gatz, B.Z., Nobre, M.F., Bagaley, D., Rash, B.A., Park, M.J., Earl, A.M., Shank, N.C., et al. 2005. Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl. Environ. Microbiol. 71, 5225–5235.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reasoner, D.J. and Geldreich, E.E. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy, G.S.N., Aggarwal, R.K., Matsumoto, G.I., and Shivaji, S. 2000. Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int. J. Syst. Evol. Microbiol. 50, 1553–1561.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S.N. and Garcia-Pichel, F. 2005. Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado plateau, USA and emended description of the genus Dyadobacter Chelius and Tripplett 2000. Int. J. Syst. Evol. Microbiol. 55, 1295–1299.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S.N. and Garcia-Pichel, F. 2006. The community and phylogenetic diversity of biological soil crusts in the Colorado plateau studied by molecular fingerprinting and intensive cultivation. Microb. Ecol. 52, 345–357.

    Article  Google Scholar 

  • Reddy, G.S.N. and Garcia-Pichel, F. 2007. Sphingomonas mucosissima sp. nov., and Sphingomonas dessicabilis sp. nov. isolated from biological soil crusts in the Colorado plateau, USA. Int. J. Syst. Evol. Microbiol. 57, 1028–1034.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S.N. and Garcia-Pichel, F. 2009. Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al., 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int. J. Syst. Evol. Microbiol. 59, 87–94.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S.N. and Garcia-Pichel, F. 2013. Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie van Leeuwenhoek 103, 321–330.

    Article  PubMed  Google Scholar 

  • Reddy, G.S.N., Manasa, B.P., Singh, S.K., and Shivaji, S. 2013. Paenisporosarcina indica sp. nov., a psychrophilic bacterium from Pindari glacier of the Himalayan mountain ranges and reclassification of Sporosarcina antarctica Yu et al., 2008 as Paenisporosarcina antarctica comb. nov. and emended description of the genus Paenisporosarcina. Int. J. Syst. Evol. Microbiol. 63, 2927–2933.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S.N., Nagy, M., and Garcia-Pichel, F. 2006. Belnapia moabensis gen. nov., sp. nov., an α-proteobacterium from biological soil crusts in the Colorado Plateau, USA. Int. J. Syst. Evol. Microbiol. 56, 51–58.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G.S.N., Potrafka, R., and Garcia-Pichel, F. 2007. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and M. multiseptatus (Mevs et al., 2000). Int. J. Syst. Evol. Microbiol. 57, 2014–2020.

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.

    Article  PubMed  Google Scholar 

  • Rodriguez-Amaya, D.B. 1999. A guide to analysis in foods, pp. 14–15. ILSI Res, Washington D.C., USA.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The Neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Samanta, S.K., Chakraborti, A.K., and Jain, R.K. 1999. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl. Microbiol. Biotechnol. 53, 98–107.

    Article  CAS  PubMed  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark DE, USA.

    Google Scholar 

  • Schulz, S., Brankatschk, R., Dümig, A., Kögel-Knabner, I., Schloter, M., and Zeyer, J. 2013. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences 10, 3983–3996.

    Article  Google Scholar 

  • Sharma, H.K. and Gaur, H.S. 2008. Hatch inhibition of Meloidogyne incognita by aqueous extracts and exudates of five species of cyanobacteria. Nematol. Medit. 36, 99–102.

    Google Scholar 

  • Sharma, S., Kumar, V., and Tripathi, R.B. 2011. Isolation of phosphate solubilizing microorganism (PSMs) from soil. J. Microbiol. Biotech. Res. 1, 90–95.

    Google Scholar 

  • Shivaji, S., Rao, N.S., Saisree, I., Sheth, V., Reddy, G.S.N., and Bhargava, P.M. 1988. Isolation and identification of Micrococcus roseus and Planococcus sp. from Schirmacher oasis, Antarctica. J. Biosci. 13, 409–414.

    Article  Google Scholar 

  • Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. Methods for general and molecular bacteriology, pp. 607–654. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. American Society for Microbiology, Washington D.C., USA.

    Google Scholar 

  • Smith, S.M., Abed, R.M.M., and Garcia-Pichel, F. 2004. Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA. Microb. Ecol. 28, 200–208.

    Article  Google Scholar 

  • Sneath, P.H.A., Stevens, M., and Sackin, M.J. 1981. Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47, 423–448.

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846–849.

    Article  CAS  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tao, X.Q., Lu, G.N., Dang, Z., Yang, C., and Yi, X.Y. 2007. A phenanthrene- degrading strain Sphingomonas sp. GY2B isolated from contaminated soils. Process Biochem. 42, 401–408.

    Article  CAS  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vancanneyt, M., Witt, S., Abraham, W.R., Kersters, K., and Fredrickson, H.L. 1996. Fatty acid content in whole-cell hydrolysates and phospholipid fractions of Pseudomonads: a taxonomic evaluation. Syst. Appl. Microbiol. 19, 528–540.

    Article  CAS  Google Scholar 

  • Yadav, S., Sinha, R.P., Tyagi, M.B., and Kumar, A. 2011. Cyanobacterial secondary metabolites. Int. J. Pharma Bio Sciences 2, 144–167.

    CAS  Google Scholar 

  • Zenoff, V., Heredia, J., Ferrero, M., Sineriz, F., and Farias, M.E. 2006. Diverse UV-B resistance of culturable bacterial community from high-altitude wetland water. Curr. Microbiol. 52, 359–362.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Zhang, G., Liu, G., Dong, Z., Chen, T., Zhang, M., Dyson, P.J., and An, L. 2012. Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. J. Environ. Sci. (China). 24, 2004–2011.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gundlapally Sathyanarayana Reddy.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956. GenBank/EMBL accession numbers for the 16S rRNA gene sequence of Pseudomonas asuensis sp. nov. (CP155-2T) is AJ871471.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, G.S., Garcia-Pichel, F. Description of Pseudomonas asuensis sp. nov. from biological soil crusts in the Colorado plateau, United States of America. J Microbiol. 53, 6–13 (2015). https://doi.org/10.1007/s12275-015-4462-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-015-4462-4

Keywords

Navigation