Skip to main content
Log in

Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Plant cell culture provides a viable alternative over whole plant cultivation for the production of secondary metabolites. In order to successfully cultivate the plant cells at large scale, several engineering parameters such as, cell aggregation, mixing, aeration, and shear sensitivity are taken into account for selection of a suitable bioreactor. The media ingredients, their concentrations and the environmental factors are optimized for maximal synthesis of a desired metabolite. Increased productivity in a bioreactor can be achieved by selection of a proper cultivation strategy (batch, fed-batch, two-stageetc.), feeding of metabolic precursors and extraction of intracellular metabolites. Proper understanding and rigorous analysis of these parameters would pave the way towards the successful commercialization of plant cell bioprocesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiCosmo, F., P. J. Facchini, and M. M. Kraml (1989) Cultured plant cells: The chemical factory within.Chemistry in Britain 25: 1001–1004.

    CAS  Google Scholar 

  2. Flores, H. E. and W. R. Curtis (1992) Approaches to understanding and manipulating the biosynthetic potential of plant roots.Ann. New York Acad. Sci. 665: 188–209.

    Article  CAS  Google Scholar 

  3. Chattopadhyay, S., A. K. Srivastava, S. S. Bhojwani, and V. S. Bisaria (2001) Davelopment of suspension culture ofPodophyllum hexandrum for the production of podophyllotoxin.Biotechnol. Lett. 23: 2063–2066.

    Article  CAS  Google Scholar 

  4. Payne, G. F., M. L. Shuler, and P. Brodelius (1987) Plant cell culture. pp. 193–229. In: B. K. Lydensen (ed).Large Scale Cell Culture Technology, Hanser Publishers, New York, USA

    Google Scholar 

  5. Memelink, J., J. W. Kijne, R. van der Heijden, and R. Verpoorte (2001) Cenetic modification of plant secondary metabolite pathways using transcriptional regulators.Adv. Biochem. Eng./Biotechnol. 72: 103–125.

    CAS  Google Scholar 

  6. Panda, A. K., S. Mishra, V. S. Bisaria, and S. S. Bhojwani (1989) Plant cell reactors: A perspective.Enzyme Microb. Technol. 11: 386–397.

    Article  CAS  Google Scholar 

  7. Bisaria, V. S. and A. K. Panda (1991) Large scale plant cell culture methods, applications and products.Curr. Opin. Biotechnol. 2: 370–374.

    Article  CAS  Google Scholar 

  8. Scragg, A. H. (1995) The problems associated with high biomass levels in plant cell suspensions.Plant Cell Tiss. Org. Cult. 43: 163–170.

    Article  CAS  Google Scholar 

  9. Kieran, P. M., P. F. MacLoughlin, and D. M. Malone (1997) Plant cell suspension cultures: some engineering considerations.J. Biotechnol. 59: 39–52.

    Article  CAS  Google Scholar 

  10. Taticek, R. A., M. Moo-Young, and R. L. Legge (1991) The scale-up of plant cell cultures: engineering considerations.Plant Cell Tiss. Org. Cult. 24: 139–158.

    Article  Google Scholar 

  11. Wagner, F. and H. Vogelman (1977) Cultivation of plant tissue cultures in bioreactors and formation of secondary metabolites. pp. 245–252. In: W. Barz, E. Reinhard, M. H. Zenk (eds).Plant Tissue Culture and Its Biotechnological Applications. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  12. Tanaka, H. (2000) Technological problems in cultivation of plant cells at high density.Biotechnol. Bioeng. 67: 1203–1218.

    Article  Google Scholar 

  13. Tanaka, H. (1982) Some properties of pseudocells of plant cells.Biotechnol. Bioeng. 24: 2591–2596.

    Article  CAS  Google Scholar 

  14. Jolicoeur, M., C. Chavarre, P. J. Carreau, and J. Archambault (1992) Development of helical-ribbon impeller bioreactor for high density plant cell suspension culture.Biotechnol. Bioeng. 39: 511–521.

    Article  CAS  Google Scholar 

  15. Chattopadhyay, S., A. K. Srivastava, S. S. Bhojwani, and V. S. Bisaria (2002) Production of podophyllotoxin by plant cell cultures ofPodophyllant hexandrum in bioreactor.J. Biosci. Bioeng. 93: 215–220.

    Article  CAS  Google Scholar 

  16. Leckie F., A. H. Scragg, and K. C. Cliffe (1991) An investigation into the role of initialk L a on the growth and alkaloid accumulation by cultures ofCatharanthus roseus.Biotechnol. Bioeng. 37: 364–370.

    Article  CAS  Google Scholar 

  17. Zhong, J. J., T. Seki, S. Kinoshita, and T. Yoshida (1992) Effects of surfactants on cell growth and pigment production in suspension cultures ofPerilla frutescens.World J. Microbiol. Biotechnol. 8: 106–109.

    Article  CAS  Google Scholar 

  18. Wongasmuth, M. and P. M. Doran (1994) Foaming and cell floatation in suspended plant cell cultures and the effect of chemical antifoams.Biotechnol. Bioeng. 44: 481–488.

    Article  Google Scholar 

  19. Drapeau, D., H. W. Blanch, and C. R. Wilke (1986) Growth kinetics ofDioscorea deltoidea andCatharanthus roseus in batch culture.Biotechnol. Bioeng. 28: 1555–1563.

    Article  CAS  Google Scholar 

  20. Scragg, A. H., E. J. Allan, and F. Leckie (1988) Effect of shear on the viability of plant cell suspensions.Enzyme Microb. Technol. 10: 361–367.

    Article  Google Scholar 

  21. Meijer, J. J., H. J. G. ten Hoopen, K. C. A. M. Luyben, and K. R. Libbenga (1993) Effects of hydrodynamic stress on cultured plant cells: a literature survey.Enzyme Microb. Technol. 15: 234–238.

    Article  CAS  Google Scholar 

  22. Kieran, P. M., H. J. O'Donnell, D. M. Malone, and P. F. MacLoughlin (1995) Fluid shear effects on suspension cultures ofMorinda citrifolia.Biotechnol. Bioeng. 45: 415–425.

    Article  CAS  Google Scholar 

  23. Zhong, J. J., K. Fujiyama, T. Seki, and T. Yoshida (1994) A quantitative analysis of shear effects on cell suspension and cell cultures ofPerilla frutescens in bioreactors.Biotechnol. Bioeng. 44: 649–654.

    Article  CAS  Google Scholar 

  24. Kieran, P. M., D. M. Malone, and P. F. MacLoughlin (2000) Effect of hydrodynamic and interfacial forces on plant cell systems. pp. 139–177. In: T. Scheper, K. Schugerl, and G. Kretzmer (eds).Adv. Biochem. Eng./Biotechnol. Vol 67, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  25. Plackett, R. L. and J. P. Burman (1946) The design of optimum multifactorial experiments.Biometrika 33: 305–325.

    Article  Google Scholar 

  26. Bowman, L. and E. Geiger (1984) Optimization of fermentation conditions for alcohol production.Biotechnol. Bioeng. 26: 1492–1497.

    Article  CAS  Google Scholar 

  27. Roseiro, J. C., M. E. Esgalhado, A. M. T. Collaco, and A. N. Emery (1992) Medium development for xanthan production.Process Biochem. 27: 167–175.

    Article  CAS  Google Scholar 

  28. Narang, S., V. Sahai, and V. S. Bisaria (2001) Optimization of xylanase production byMelanocarpus albomyces IIS68 in solid-state fermentation using response surface methodology.J. Biosci. Bioeng. 91: 425–427.

    Article  CAS  Google Scholar 

  29. Cochran W. G. and G. M. Cox (1957)Experimental Design. 2nd ed. John Wiley & Sons, New York, USA.

    Google Scholar 

  30. Deming, S. N. and S. L. Morgan (1987)Experimental Design: A Chemometric Approach, 1st ed. Elsevier Science Publishers BV, New York, USA.

    Google Scholar 

  31. Cheynier, V., M. Feinberg, C. Chararas, and C. Ducauze (1983) Application of response surface methodology for evaluation of bioconversion experimental conditions.Appl. Environ. Microbiol. 45: 634–639.

    Google Scholar 

  32. Harris, P. V., S. L. Cuppett, and L. B. Bullerman (1990) Optimization of lipase synthesis byPseudomonas fluorescens by response surface methodology.J. Food Protect. 53: 481–483.

    CAS  Google Scholar 

  33. Botta, B., G. Dall'Olio, F. Ferrari, B. Monaceli, G. Pasqua, R. Scurria, and D. G. Monache (1989) Cell suspension cultures ofCassia didymobotrya: optimization of growth and secondary metabolite production by application of orthogonal design method.J. Plant Physiol. 135: 290–294.

    CAS  Google Scholar 

  34. Tuominen, U., L. Toivonen, V. Kauppinen, P. Markkanen, and L. Bjork (1989) Studies on the growth and cardenolide production ofDigitalis lanata tissue cultures.Biotechnol. Bioeng. 33: 558–562.

    Article  CAS  Google Scholar 

  35. Schlatmann, J. E., H. J. G. ten Hoopen, and J. J. Heijnen (1992) Optimization of the medium composition for alkaloid production byCatharanthus roseus using statistical experimental designs.Med. Fac. Landbouw Univ. Gent. 57: 1567–1569.

    CAS  Google Scholar 

  36. Chattopadhyay, S., A. K. Srivastava, and V. S. Bisaria (2002) Optimization of culture parameters for production of podophyllotoxin in suspension culture ofPodophyllum hexandrum. Appl. Biochem. Biotechnol. (in press).

  37. ten Hoopen, H. J. G., W. M. van Gulik, J. E. Schlatman, P. R. H. Moreno, J. Vinke, J. J. Heijnen, and R. Verpoorte (1994) Ajmalicine production by cell cultures ofCatharanthus roseus: from shake flask to bioreactor.Plant Cell Tiss. Org. Cult. 38: 85–91.

    Article  CAS  Google Scholar 

  38. Fulzele, D., W. Kreis, and E. Reinhard (1992) Cardenolide biotransformation by culturedDigitalis lanata cells: Semi-continuous cell growth and production of deacetyllanatoside-C in a 40-L stirred tank bioreactor.Planta Med. 58: A601-A602.

    Article  Google Scholar 

  39. Zhong, J. J., F. Chen, and W. W. Hu (2000) High density cultivation ofPanax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin.Process Biochem. 35: 491–496.

    Article  CAS  Google Scholar 

  40. Srinivasan, V., L. Pestchanker, S. Moser, T. J. Hirasuma, R. A. Taticek, and M. L. Shuler (1995) Taxol production in bioreactors: kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions ofTaxus baccata.Biotechnol. Bioeng. 47: 666–676.

    Article  CAS  Google Scholar 

  41. Son, s. H., S. M. Choi, Y. H. Lee, K. B. Choi, S. R. Yun, J. K. Kim, H. J. Park, O. W. Kwon, E. W. Noh, J. H. Seon, and Y. J. Park (2000) Large-scale growth and taxane production in cell cultures ofTaxus cuspidata (Japanese Yew) using a novel bioreactor.Plant Cell Rep. 19: 628–638.

    Article  CAS  Google Scholar 

  42. Zhao, J., W. H. Zhu, and O. Hu (2001) Enhanced catharanthine production inCatharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors.Enzyme Microb. Technol. 28: 673–681.

    Article  CAS  Google Scholar 

  43. Reinhard, E., W. Kreis, U. Barthlen, and U. Helmbold (1989) Semicontinuous cultivation ofDigitalis lanata cells: production of β-methyldigoxin in a 3001 airlift bioreactor.Biotechnol. Bioeng. 34: 502–508.

    Article  CAS  Google Scholar 

  44. Tanaka H. (1987) Large-scale cultivation of plant cells at high density: A reviewProcess Biochem. 22: 106–113.

    Google Scholar 

  45. Pan, Z. W., H. Q. Wang, and J. J. Zhong (2000) Scale-up study of suspension culture ofTaxus chinensis cells for production of taxane diterpene.Enzyme Microb. Technol. 27: 714–723.

    Article  CAS  Google Scholar 

  46. Goldstein, W. E., L. L. Lasure, and M. B. Ingle (1980) Product cost analysis. pp. 191–234. In: E. J. Staba (ed).Plant Tissue Culture as a Source of Biochemicals. CRC Press, Boca Raton, USA.

    Google Scholar 

  47. Sajc, L., D. Grubisic, G. V. Novakovic (2000) Bioreactors for plant engineering: an outlook for further research.Biochem. Eng. J. 4: 89–99.

    Article  Google Scholar 

  48. Hooker, B. S., J. M. Lee, and G. An (1990) Cultivation of plant cells in stirred vessel: effect of impeller designs.Biotechnol. Bioeng. 35: 296–304.

    Article  CAS  Google Scholar 

  49. Furuya, T. (1988) Saponins (ginseng saponins). In: I. K. Vasil (ed). pp. 213–234.Cell Culture and Somatic Cell Genetics of Plants Vol 5. Academic Press, CA, USA.

    Google Scholar 

  50. Wu, J. and J. J. Zhong (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects.J. Biotechnol. 68: 89–99.

    Article  CAS  Google Scholar 

  51. Matsubara, K., S. Kitani, T. Yoshioka, T. Morimoto, Y. Fujita, and Y. Yamada (1989) High density culture ofCoptis japonica cells increases berberine production.J. Chem. Technol. Biotechnol. 46: 61–69.

    CAS  Google Scholar 

  52. Hara, Y. (1996) Research on the production of useful compounds by plant cell cultures in Japan. pp. 187–201. In: F. DiCosmo and M. Misawa (eds).Plant Cell Culture Secondary Metabolism Toward Industrial Application. CRC Press, New York, USA.

    Google Scholar 

  53. Wu, J. and K. P. Ho (1999) Assessment of various carbon sources and nutrient feeding strategies forPanax gineng cell culture.Appl. Biochem. Biotechnol. 82: 17–26.

    Article  CAS  Google Scholar 

  54. Wang, H. Q., J. T. Yu, and J. J. Zhong (1999) Significant improvement of taxane production in suspension cultures ofTaxas chinensis by sucrose feeding strategy.Process Biochem. 35: 479–483.

    Article  Google Scholar 

  55. Schiel, O., J. K. Redecker, G. W. Piehl, J. Lehmann, and J. Berlin (1984) Increased formation of cinnamoyl putrescines by fedbatch fermentation of cell suspension cultures ofNicotiana tabacum.Plant Cell Rep. 3: 18–20.

    Article  CAS  Google Scholar 

  56. Su, W. W, F. Lei, and N. P. Kao (1995) High density cultivation ofAnchusa officinalis in a stirred tank bioreactor with in situ filtration.Appl. Microbiol. Biotechnol. 44: 293–299.

    Article  CAS  Google Scholar 

  57. Kobayashi, Y., M. Akita, K. Sakamoto, H. Liu, T. Shigeoka, and T. Koyano (1993) Large-scale production of anthocyanin byAralia cordata cell suspension culturesAppl.Microbiol. Biotechnol. 40: 215–218.

    CAS  Google Scholar 

  58. Zhao, J., W. H. Zhu, and Q. Hu (2001) Enhanced catharanthine production inCatharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors.Enzyme Microb. Technol. 28: 673–681.

    Article  CAS  Google Scholar 

  59. Panda, A. K., V. S. Bisaria, and S. Mishra (1992) Alkaloid production by plant cell cultures ofHolarrhena antidysenterica: II Effect of precursor feeding and cultivation in stirred tank bioreactor.Biotechnol. Bioeng. 39: 1052–1057.

    Article  CAS  Google Scholar 

  60. Tabata, M. and Y. Fujita (1985) Production of shikonin by plant cell cultures. pp. 207–218. In: M. Zaitlin, P. Day and A. Hollaender (eds).Biotechnology in Plant Science. Relevance to Agriculture in the Eightics Academic Press, San Diego, USA.

    Google Scholar 

  61. Zhong, J. J., F. Chen, and W. W. Hu (1999) High density cultivation ofPanax notoginseng cells in stirred tank bioreactors for the production of ginseng biomass and ginseng saponin.Process Biochem. 35: 491–496.

    Article  Google Scholar 

  62. Woragidbumrung, K., P. S. Tang, H. Yao, S. Chauvatcharin, and J. J. Zhong (2001) Impact of conditioned medium on cell cultures ofPanax notoginseng in an airlift bioreactor.Process Biochem. 37: 209–213.

    Article  CAS  Google Scholar 

  63. Zhang, Y. H. and J. J. Zhong (1997) Hyperproduction of ginseng saponin and polysaccharide by high density cultivation ofPanax notoginseng cells.Enzyme Microb. Technol. 21: 59–63.

    Article  CAS  Google Scholar 

  64. Zhong, J. J. and T. Yoshida (1995) High-density cultivation ofPerilla frutescens cell suspensions for anthocyanin production: effects of sucrose concentration and inoculum size.Enzyme Microb. Technol. 17: 1073–1079.

    Article  CAS  Google Scholar 

  65. Choi, H. K., J. H. Yun, S. I. Kim, J. S. Son, H. R. Kim, J. H. Kim, H. J. Choi and S. S. Hong (2001) Inhanced production of paclitaxel by semi-continuous batch process (SCBP) in suspension culture ofTaxus chinensis.Enzyme Microb. Technol. 29: 583–586.

    Article  CAS  Google Scholar 

  66. Pestchanker, L. J., S. C. Roberts, and M. L. Shuler (1996) Kinetics of taxol production and nutrient use in suspension cultures ofTaxus cuspidata in shake flasks and a Wilson-type bioreactor.Enzyme Microb. Technol. 19: 256–260.

    Article  CAS  Google Scholar 

  67. Park, H. H., S. K. Choi, J. K. Kang, and H. Y. Lee (1990) Enhancement of producing catharanthine by suspension growth ofCatharanthus roseus.Biotechnol. Lett. 12: 603–608.

    Article  CAS  Google Scholar 

  68. Hashimoto, T., S. Azechi, S. Sugita, and K. Suzuki (1982) Large scale production of tobacco cells by continuous cultivation. In: A. Fujiwara (ed). pp. 403–404.Plant Tissue Culture. Japan Association of Plant Tissue Culture, Tokyo, Japan.

    Google Scholar 

  69. Goswami, V. and A. K. Srivastava (2001) Proplonic acid production in an in situ cell retention bioreactor.Appl. Microbiol. Biotechnol. 56: 676–680.

    Article  CAS  Google Scholar 

  70. Wheat, D., R. P. Bondaryk, and J. Nystrom (1986) Spin filter bioreactor technology as applied to industrial plant propagation.Hort. Sci. 21: 819.

    Google Scholar 

  71. Scragg, A. H., S. Ashton, A. York, P. Bond, G. Stephan-Sarkissan, and D. Grey (1990) Growth ofCatharanthus roseus suspension for maximum biomass and alkaloid accumulation.Enz. Microbial Technol. 12: 292–298.

    Article  CAS  Google Scholar 

  72. Kries, W. and E. Reinhard (1990) Two stage cultivation ofDigitalis lanata cells: semicontinuous production of deacetyl lantoside C in 20 litre air-lift bioreactor.J. Biotechnol. 16: 123–126.

    Article  Google Scholar 

  73. Kim, D. I., H. Pederson, and C. C. Chin (1990) Two stage culture for the production of berberine in cell suspension culture ofThalictrum rugosum.J. Biotechnol. 16: 297–304.

    Article  CAS  Google Scholar 

  74. van Gulik, W. M., H. J. G. ten Hoopen, and J. J. Heijnen (1993) A structured model describing carbon and phosphate limited growth ofCatharanthus roseus plant cell suspensions in batch and chemostat cultures.Biotechnol. Bioeng. 41: 771–780.

    Article  Google Scholar 

  75. Bailey, C. M. and H. Nicholson (1990) Optimal temperature control for a structured model of plant cell culture.Biotechnol. Bioeng. 35: 252–259.

    Article  CAS  Google Scholar 

  76. Glicklis, R., D. Mills, D. Sitton, W. Stortelder, and J. C. Merchuk (1998) Polysaccharide production by plant cells in suspension: experiments and mathematical modeling.Biotechnol. Bioeng. 57: 732–740.

    Article  CAS  Google Scholar 

  77. Nuutila, A. M., U. Kurten, and V. Kauppinen (1991) Optimization of sucrose and inorganic nitrogen concentrations for somatic embryogenesis of birch (Betula pendula Roth.) callus cultures: a statistical approach.Plant Cell Tiss. Org. Cult. 24: 73–77.

    Article  CAS  Google Scholar 

  78. Suvarnalatha, G., N. Chand, G. A. Ravishanker, and L. V. Venkataraman (1993) Computer-aided modeling and optimization for capsaicinoid production by immobilizedCapsicum frutescens cells.Enzyme Microb. Technol. 15: 710–715.

    Article  CAS  Google Scholar 

  79. Smith, J. M., S. W. Davison, and G. F. Payne (1990) Development of a strategy to control the dissolved concentration of oxygen and carbon dioxide at constant shear in a plant cell bioreactor.Biotechnol. Bioeng. 35: 1088–1101.

    Article  CAS  Google Scholar 

  80. Contin, A., R. van der Heijden, and R. Verpoorte (1999) Effects of alkaloid precursor feeding and elicitation on the accumulation of secologanin in aCatharanthus roseus cell suspension culture.Plant Cell Tiss. Org. Cult. 56: 111–119.

    Article  CAS  Google Scholar 

  81. Moreno, P. R. H., R. van der Heijden, and R. Verpoorte (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension culture ofCatharanthus roseus.Plant Cell Rep. 12: 702–705.

    Article  CAS  Google Scholar 

  82. Fett-Neto, A. G. and F. DiCosmo (1996) Production of paclitaxel and related taxoids in cell cultures ofTaxus cuspidata: perspectives for industrial applications. pp. 139–166. In: F. DiCosmo and M. Misawa (eds)Plant Cell Culture Secondary Metabolism Toward Industrial Application. CRC Press, New York, USA.

    Google Scholar 

  83. Brodelius, P. E. (1988) Permeabilization of plant cells for release of intracellularly stored products: Viability studies.Appl. Microbiol. Biotechnol. 27: 561–566.

    CAS  Google Scholar 

  84. Wang, C., J. Wu, and X. Mei (2001) Enhanced taxol production and release inTaxus chinensis cell suspension cultures with selected organic solvents and sucrose feeding.Biotechnol. Prog. 17: 89–94.

    Article  CAS  Google Scholar 

  85. Laane, C., S. Boeren, K. Vos, and C. Veeger (1987) Rules for the optimization of biocatalysis in organic solvents.Biotechnol. Bioeng. 30: 81–87.

    Article  CAS  Google Scholar 

  86. Buitelaar, R. M., M. H. Vermue, J. E. Schlatmann, and J. Tramper (1990) The influence of various organic solvents on the respiration of free and immobilized cells ofTagetes minuta.Biotechnol. Tech. 4: 415–418.

    Article  CAS  Google Scholar 

  87. Buitelaar, R. M., A. A. M. Langenhoff, R. Heidstra, and J. Tramper (1991) Growth and thiophene production by hairy root cultures ofTagetes patula in various two-liquid-phase bioreactors.Enzyme Microb. Technol. 13: 487–494.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra S. Bisaria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, S., Farkya, S., Srivastava, A.K. et al. Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioprocess Eng. 7, 138–149 (2002). https://doi.org/10.1007/BF02932911

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02932911

Keywords

Navigation