Skip to main content
Log in

Fabrication and characterization of friction stir–processed Mg-Zn-Ca biomaterials strengthened with MgO particles

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Magnesium alloy composites play an important role in the biomaterials field. In this study, a novel Mg-Zn-Ca matrix composite was reinforced by adding 1.0 wt.% MgO nanoparticles via the high shear casting process. Hereafter, friction stir processing (FSP) was used to achieve a good dispersion of MgO particles and improve the mechanical properties of the composites. After the preparation of the novel composite materials, varied characterization and performance test methods have been selected for comparison. The results illustrate that through FSP, the corresponding microstructure and properties of as-cast MgO/Mg-Zn-Ca composites were significantly modified, and the best combination of the key parameters is 1200 rpm and 60 mm/min for rotational velocity and traveling speed, respectively. After the optimized FSP treatment, the grain size in FSP-processed composites was refined by 42%, to reach 1.04 μm. Due to the grain refinement and the redistribution of MgO particles, the hardness of the FSP-processed MgO/Mg-Zn-Ca composites was increased by 40%, to reach 101.2 HV. Further, it displayed excellent corrosion resistance as well as strength. Compared to the strengthening through grain refinement, particle strengthening is more dominant based on the study. And meanwhile, the modified grains and added MgO particles are beneficial to the properties of the nugget zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Islam R, Hadadzadeh A, Wells M, Haghshenas M (2020) Thermomechanical processing of an ultralight Mg-14Li-1Al alloy. Int J Adv Manuf Technol 110:3221–3239. https://doi.org/10.1007/s00170-020-06032-z

    Article  Google Scholar 

  2. Moradnezhad S, Razaghian A, Taghiabadi R, Abedi HR, Salandari-Rabori A, Emamy M (2019) Effect of Ca additions on evolved microstructures and subsequent mechanical properties of a cast and hot-extruded Mg–Zn–Zr magnesium alloy. Int J Adv Manuf Technol 104:4265–4275. https://doi.org/10.1007/s00170-019-04260-6

    Article  Google Scholar 

  3. Naser AZ, Darras BM (2017) Experimental investigation of Mg/SiC composite fabrication via friction stir processing. Int J Adv Manuf Technol 91:781–790. https://doi.org/10.1007/s00170-016-9801-z

    Article  Google Scholar 

  4. Chen L, Yao Y (2014) Processing, microstructures, and mechanical properties of magnesium matrix composites: a review. Acta Metall Sin-Engl 27:762–774. https://doi.org/10.1007/s40195-014-0161-0

    Article  Google Scholar 

  5. Jaiswal S, Kumar RM, Gupta P, Kumaraswamy M, Roy P, Lahiri D (2018) Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. J Mech Behav Biomed 78:442–454. https://doi.org/10.1016/j.jmbbm.2017.11.030

    Article  Google Scholar 

  6. Liu D, Zuo Y, Meng W, Chen M, Fan Z (2012) Fabrication of biodegradable nano-sized β-TCP/Mg composite by a novel melt shearing technology. Mater Sci Eng C 32:1253–1258. https://doi.org/10.1016/j.msec.2012.03.017

    Article  Google Scholar 

  7. Lin G, Liu D, Chen M, You C, Li Z, Wang Y, Li W (2018) Preparation and characterization of biodegradable Mg-Zn-Ca/MgO nanocomposites for biomedical applications. Mater Charact 144:120–130. https://doi.org/10.1016/j.matchar.2018.06.028

    Article  Google Scholar 

  8. Goh CS, Gupta M, Wei J, Lee LC (2007) Characterization of high performance Mg/MgO nanocomposites. J Compos Mater 41:2325–2335. https://doi.org/10.1177/0021998307075445

    Article  Google Scholar 

  9. Khalajabadi SZ, Abdul Kadir MR, Izman S, Marvibaigi M (2016) The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method. J Alloy Compd 655:266–280. https://doi.org/10.1016/j.jallcom.2015.09.107

    Article  Google Scholar 

  10. Lei T, Tang W, Cai S, Feng F, Li N (2012) On the corrosion behaviour of newly developed biodegradable Mg-based metal matrix composites produced by in situ reaction. Corros Sci 54:270–277. https://doi.org/10.1016/j.corsci.2011.09.027

    Article  Google Scholar 

  11. Bae S, Jung KH, Shin Y, Yoon DJ, Kawasaki M (2016) Development of mechanical properties in a CaO added AZ31 magnesium alloy processed by equal-channel angular pressing. Mater Charact 112:105–112. https://doi.org/10.1016/j.matchar.2015.12.009

    Article  Google Scholar 

  12. Arokiasamy S, Anand Ronald B (2017) Experimental investigations on the enhancement of mechanical properties of magnesium-based hybrid metal matrix composites through friction stir processing. Int J Adv Manuf Technol 93:493–503. https://doi.org/10.1007/s00170-017-0221-5

    Article  Google Scholar 

  13. Vandana B, Syamala P, Venugopal DS, Sk SRKI, Venkateswarlu B, Jagannatham M, Kolenčík M, Ramakanth I, Dumpala R, Sunil BR (2019) Magnesium/fish bone derived hydroxyapatite composites by friction stir processing: studies on mechanical behaviour and corrosion resistance. B Mater Sci 42. https://doi.org/10.1007/s12034-019-1799-z

  14. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344–348. https://doi.org/10.1016/j.msea.2006.01.016

    Article  Google Scholar 

  15. Sahraeinejad S, Izadi H, Haghshenas M, Gerlich AP (2015) Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater Sci Eng A 626:505–513. https://doi.org/10.1016/j.msea.2014.12.077

    Article  Google Scholar 

  16. Lee CJ, Huang JC, Hsieh PJ (2006) Mg based nano-composites fabricated by friction stir processing. Scripta Mater 54:1415–1420. https://doi.org/10.1016/j.scriptamat.2005.11.056

    Article  Google Scholar 

  17. Asadi P, Faraji G, Besharati MK (2010) Producing of AZ91/SiC composite by friction stir processing (FSP). Int J Adv Manuf Technol 51:247–260. https://doi.org/10.1007/s00170-010-2600-z

    Article  Google Scholar 

  18. Abbasi Gharacheh M, Kokabi AH, Daneshi GH, Shalchi B, Sarrafi R (2006) The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds. Int J Mach Tool Manu 46:1983–1987. https://doi.org/10.1016/j.ijmachtools.2006.01.007

    Article  Google Scholar 

  19. Liu Z, Li F, Feng Y, Meng Q (1996) Influence of Ca and Zn on the high-temperature oxidation resistance and room-temperature mechanical property of Mg in as-cast condition. Journal of Harbin University of Science and Technology 35–38.

  20. Woo W, Feng Z, Clausen B, David SA (2017) In situ neutron diffraction analyses of temperature and stresses during friction stir processing of Mg-3Al-1Zn magnesium alloy. Mater Lett 196:284–287. https://doi.org/10.1016/j.matlet.2017.03.117

    Article  Google Scholar 

  21. Song Y, Han E, Shan D, Yim CD, You BS (2012) The role of second phases in the corrosion behavior of Mg–5Zn alloy. Corros Sci 60:238–245. https://doi.org/10.1016/j.corsci.2012.03.030

    Article  Google Scholar 

  22. Lu Y, Bradshaw AR, Chiu YL, Jones IP (2015) Effects of secondary phase and grain size on the corrosion of biodegradable Mg–Zn–Ca alloys. Mater Sci Eng C 48:480–486. https://doi.org/10.1016/j.msec.2014.12.049

    Article  Google Scholar 

  23. Bakhsheshi-Rad HR, Abdul-Kadir MR, Idris MH, Farahany S (2012) Relationship between the corrosion behavior and the thermal characteristics and microstructure of Mg–0.5Ca–xZn alloys. Corros Sci 64:184–197. https://doi.org/10.1016/j.corsci.2012.07.015

    Article  Google Scholar 

  24. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33. https://doi.org/10.1002/(SICI)1527-2648(199909)1:1<11::AID-ADEM11>3.0.CO;2-N

    Article  Google Scholar 

  25. Cao F, Song G, Atrens A (2016) Corrosion and passivation of magnesium alloys. Corros Sci 111:835–845. https://doi.org/10.1016/j.corsci.2016.05.041

    Article  Google Scholar 

  26. Ambat R, Aung NN, Zhou W (2000) Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corros Sci 42:1433–1455

    Article  Google Scholar 

  27. Ho Y, Joshi SS, Wu T, Hung C, Ho N, Dahotre NB (2020) In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Mater Sci Eng C 109:110632. https://doi.org/10.1016/j.msec.2020.110632

    Article  Google Scholar 

  28. Wang W, Wu H, Sun Y, Yan J, Zhang L, Zhang S, Ni J, Song Y, Zhang X (2020) Local intragranular misorientation accelerates corrosion in biodegradable Mg. Acta Biomater 101:575–585. https://doi.org/10.1016/j.actbio.2019.10.036

    Article  Google Scholar 

  29. Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater 63:1201–1204. https://doi.org/10.1016/j.scriptamat.2010.08.035

    Article  Google Scholar 

  30. Singla S, Singh Kang A, Sidhu TS (2020) Characterization and electrochemical corrosion behaviour of FSPed WE43/nano-SiC surface composite. Materials Today: Proceedings 26:3138–3144. https://doi.org/10.1016/j.matpr.2020.02.647

  31. Mallmann C, Hannard F, Ferrié E, Simar A, Daudin R, Lhuissier P, Pacureanu A, Fivel M (2019) Unveiling the impact of the effective particles distribution on strengthening mechanisms: a multiscale characterization of Mg+Y2O3 nanocomposites. Mater Sci Eng A 764:138170. https://doi.org/10.1016/j.msea.2019.138170

    Article  Google Scholar 

  32. Barnett MR, Keshavrz Z, Ma X (2006) A semianalytical Sachs model for the flow stress of a magnesium alloy. Metall Mater Tran A 37:2283–2293

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Tianjin University for the assistance on FSP experiments.

Funding

This work was supported by the National Natural Science Foundation of China [U1764254], the National Natural Science Foundation of China [51871166], and Major Science and Technology projects in Tianjin [No. 15ZXQXSY00080].

Author information

Authors and Affiliations

Authors

Contributions

Liu Zhen: Methodology, formal analysis, and writing—original. Cai Yangchuan: Investigation and writing—review and editing. Chen Jie: Data curation. Han Jian: Writing—review and editing—and project administration. Mao Zhiyong: Funding acquisition. Chen Minfang: Resources and funding acquisition.

Corresponding authors

Correspondence to Jian Han or Minfang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Cai, Y., Chen, J. et al. Fabrication and characterization of friction stir–processed Mg-Zn-Ca biomaterials strengthened with MgO particles. Int J Adv Manuf Technol 117, 919–932 (2021). https://doi.org/10.1007/s00170-021-07814-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-021-07814-9

Keywords

Navigation