Skip to main content
Log in

Experimental investigation of Mg/SiC composite fabrication via friction stir processing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Friction stir processing has recently emerged as an effective alternative method for fabricating metal matrix composites. This paper presents an experimental investigation on the feasibility of using friction stir processing for fabricating Mg/SiC surface composites. The effects of the processing parameters, such as the rotational and translational speeds, and the groove geometry on the prepared composites have been examined. The thermal profiles, microstructure, and microhardness of the processed materials have been analyzed. The Mg/SiC surface composite was successfully fabricated using friction stir processing. A significant increase in the microhardness was attained within the stir zone due to grain refinement and the addition of SiC particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazaheri Y, Karimzadeh F, Enayati M (2011) A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. J. Mater. Process Technol 211:1614–1619

    Article  Google Scholar 

  2. Zhan M, Li C, Zhang W, Zhan D (2012) Processing of AZ31 magnesium alloy by accumulative roll-bonding at gradient temperature. Acta Metall Sin 25(1):65–75

    Google Scholar 

  3. Tzimas E, Zavaliangos A (2000) Evolution of near-equiaxed microstructure in the semisolid state. Mater Sci Eng A 289(1–2):228–240

    Article  Google Scholar 

  4. Macke A, Schultz B, Rohatgi P (2012) Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance. Adv Mater Process 170(3):19–23

    Google Scholar 

  5. Singla M, Dwivedi D, Singh L, Chawla V (2009) Development of aluminium based silicon carbide particulate metal matrix composite. Journal of Minerals & Materials Characterization & Engineering 8(6):455–467

    Article  Google Scholar 

  6. Mishra R, Ma Z, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341(1–2):307–310

    Article  Google Scholar 

  7. Ni D, Wang J, Zhou Z, Ma Z (2014) Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing. J Alloy Compd 586:368–374

    Article  Google Scholar 

  8. Barmouz M, Givi M, Seyfi J (2011) On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, micro-hardness, wear and tensile behavior. Mater Charact 62(1):108–117

    Article  Google Scholar 

  9. Shamsipur A, Kashani-Bozorg S, Zarei-Hanzaki A (2011) The effects of friction-stir process parameters on the fabrication of Ti/SiC nano-composite surface layer. Surf. Coat. Tech. 206(6):1372–1381

    Article  Google Scholar 

  10. Ghasemi-Kahrizsangi A, Kashani-Bozorg S (2012) Microstructure and mechanical properties of steel/TiC nano-composite surface layer produced by friction stir processing. Surf Coat Tech 209:15–22

    Article  Google Scholar 

  11. Mishra R, Mahoney M, McFadden S, Mara N, Mukherjee A (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scripta Mater. 42(2):163–168

    Article  Google Scholar 

  12. Mironov S, Sato Y, Kokawa H (2008) Microstructural evolution during friction stir-processing of pure iron. Acta Mater 56(11):2602–2614

    Article  Google Scholar 

  13. Darras B, Khraisheh M (2008) Analytical modeling of strain rate distribution during friction stir processing. J Mater Eng Perform 4(1):168–177 14

    Article  Google Scholar 

  14. McNelley T, Swaminathan S, Su J (2008) Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater 58(5):349–354

    Article  Google Scholar 

  15. Gan Y, Solomon D, Reinbolt M (2010) Friction stir processing of particle rein-forced composite materials. Materials 3(1):329–350

    Article  Google Scholar 

  16. Sabirov I, Murashkin M, Valiev R (2013) Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. MaterSci Eng A 560:1–24

    Article  Google Scholar 

  17. Valiev R, Langdon T (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51(7):881–981

    Article  Google Scholar 

  18. Sakai G, Horita Z, Langdon T (2005) Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater Sci Eng A 393(1–2):344–351

    Article  Google Scholar 

  19. Sakai T, Belyakov A, Miura H (2008) Ultrafine grain formation in ferritic stainless steel during severe plastic deformation. Metall Mater Trans A 39(9):2206–2214

    Article  Google Scholar 

  20. Kapoor R, Kumar N, Mishra R, Huskamp C, Sankaran K (2010) Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al-Mg alloy. Mater Sci Eng A 527(20):5246–5254

    Article  Google Scholar 

  21. Khayyamin D, Mostafapour A, Keshmiri R (2013) The effect of process parameters on microstructural characteristics of AZ91/SiO2com-posite fabricated by FSP. Mater Sci Eng A 559:217–221

    Article  Google Scholar 

  22. Kurt A, Uygur I, Cete E (2011) Surface modification of aluminium by friction stir processing. J Mater Process Tech 211(3):313–317

    Article  Google Scholar 

  23. Shahraki S, Khorasani S, Abdi Behnagh R, Fotouhi Y, Bisadi H (2013) Producing of AA5083/ZrO2 nanocomposite by friction stir processing (FSP). Metall Mater Trans B Process Metall Mater Process Sci 44(6):1546–1553

    Article  Google Scholar 

  24. Sun N, Apelian D (2011) Friction stir processing of aluminum cast alloys for high performance applications. JOM 63(11):44–50

    Article  Google Scholar 

  25. Wang W, Shi Q, Liu P, Li H, Li T (2009) A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J Mater Process Technol 209:2099–2103

    Article  Google Scholar 

  26. Zarghani A, Bozorg F, Hanzaki A (2009) Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A 500:84–91

    Article  Google Scholar 

  27. Bauri R, Yadav D, Suhas G (2011) Effect of friction stir processing (FSP) on microstructure and properties of Al–TiC in situ composite. Mater Sci Eng A 528:4732–4739

    Article  Google Scholar 

  28. Asadi P, Faraji G, Besharati M (2010) Producing of AZ91/SiC composite by friction stir processing (FSP). Int J Adv Manuf Technol 51:247–260

    Article  Google Scholar 

  29. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344–348

    Article  Google Scholar 

  30. Ke L, Huang C, Xing L, Huang K (2010) Al–Ni intermetallic composites produced in situ by friction stir processing. J of Alloys and Compounds 503(2):494–499

    Article  Google Scholar 

  31. Mahmoud I, Takahashi M, Shibayanagi T, Ikeuchi K (2010) Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear 268(9–10):1111–1121

    Article  Google Scholar 

  32. Alidokht S, Abdollah-zadeh A, Soleymani S, Assadi H (2011) Microstructure and tribological performance of an aluminum alloy based hybrid composite produced by friction stir processing. Mater. Design 32(5):2727–2733

    Article  Google Scholar 

  33. Darras B, Omar M, Khraisheh M (2007) Experimental thermal analysis of friction stir processing. Mater Sci Forum 539:3801–3806

    Article  Google Scholar 

  34. Darras B, Khraisheh M, Abu-Farha F, Omar M (2007) Friction stir processing of commercial AZ31 magnesium alloy. J Mater Process Technol 191:77–81

    Article  Google Scholar 

  35. Salek R, Givi M, Asadi P, Bahemmat P (2010) Influence of friction stir processing parameters on the fabrication of SiC/316 L surface composite. Defect Diffus Forum 297:221–226

    Google Scholar 

  36. Saeidi M, Barmouz M, Givi M (2015) Investigation on AA5083/AA7075+Al2O3 joint fabricated by friction stir welding: characterizing microstructure, corrosion and toughness behavior. Mater Res 18(6):1156–1162

    Article  Google Scholar 

  37. Darras B (2012) A model to predict the resulting grain size of friction-stir-processed AZ31 magnesium alloy. J Mater Eng Perform 21:1243–1248

    Article  Google Scholar 

  38. Darras B, Deiab I, Naser A (2014) Prediction of friction stir processed AZ31 magnesium alloy micro-hardness using artificial neural networks. Adv Mater Res 1043:91–95

    Article  Google Scholar 

  39. Nelson T, Steel R, Arbegast W (2003) In situ thermal studies and post-weld mechanical properties of friction stir welds in age hardenable aluminum. Sci Technol Weld Join 8:283–288

    Article  Google Scholar 

  40. Dolatkhah A, Golbabaei P, Givi M, Molaiekiya F (2012) Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing. Mater Design 37:458–464

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basil M. Darras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naser, A.Z., Darras, B.M. Experimental investigation of Mg/SiC composite fabrication via friction stir processing. Int J Adv Manuf Technol 91, 781–790 (2017). https://doi.org/10.1007/s00170-016-9801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9801-z

Keywords

Navigation