Skip to main content

Mg-WC Nanocomposites—Recent Advances and Perspectives

  • Chapter
  • First Online:
Recent Advances in Layered Materials and Structures

Abstract

Present study summarizes various aspects like fabrication route, microstructural characteristics, mechanical properties, tribological properties of Mg nanocomposites. This study yields that fabrication route plays important role to achieve equiaxed distribution of reinforcement in matrix phase. Mg-MMNCs are developed through different production routes, while main distinction is the matrix state. Among different procedures, liquid metallurgy process is widely accepted due to its simplicity, industrial scalability and cost effectiveness. Effect of incorporation of nanoparticles on microstructure, mechanical properties and tribological properties are revealed by discussing literatures. Special emphasis is given on Mg-WC metal matrix nanocomposites. Effect of WC particles on microhardness, rockwell hardness, ultimate tensile strength and yield strength are also discussed in detail. Finally, wear mechanisms related to different experimental conditions are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah A, Malaki M, Baghizadeh E (2012) On the impact of ultrasonic cavitation bubbles. Proc Inst Mech Eng Part C: J Mech Eng Sci 226(3):681–694

    Google Scholar 

  2. Alam ME, Han S, Nguyen QB, Hamouda AMS, Gupta M (2011) Development of new magnesium based alloys and their nanocomposites. J Alloy Compd 509(34):8522–8529

    Article  CAS  Google Scholar 

  3. Aung NN, Zhou W, Goh CS, Nai SML, Wei J (2010) Effect of carbon nanotubes on corrosion of Mg–CNT composites. Corros Sci 52(5):1551–1553

    Google Scholar 

  4. Avedesian MM, Baker H (eds) (1999) ASM specialty handbook: magnesium and magnesium alloys. ASM international.

    Google Scholar 

  5. Aydin F, Sun Y, Ahlatci H, Turen Y (2018) Investigation of microstructure, mechanical and wear behaviour of B4C particulate reinforced magnesium matrix composites by powder metallurgy. Trans Indian Inst Met 71(4):873–882

    Article  CAS  Google Scholar 

  6. Azizieh M, Kokabi AH, Abachi P (2011) Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing. Mater Design 32(4):2034–2041

    Google Scholar 

  7. Babu JSS, Nair KP, Unnikrishnan G, Kang CG, Kim HH (2010) Fabrication and properties of magnesium (AM50)-based hybrid composites with graphite nanofiber and alumina short fiber. J Compos Mater 44(8):971–987

    Google Scholar 

  8. Bakshi SR, Lahiri D, Agarwal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64

    Google Scholar 

  9. Banerjee S, Poria S, Sutradhar G, Sahoo P (2019) Dry sliding tribological behavior of AZ31-WC nano-composites. J Magn Alloys 7(2):315–327

    Article  CAS  Google Scholar 

  10. Banerjee S, Poria S, Sutradhar G, Sahoo P (2019) Tribological behavior of Mg-WC nano-composites at elevated temperature. Mater Res Express 6(8):0865c6

    Google Scholar 

  11. Banerjee S, Poria S, Sutradhar G, Sahoo P (2019) Corrosion behavior of AZ31-WC nano-composites. J Magnes Alloy 7(4):681–695

    Google Scholar 

  12. Borodianskiy K, Zinigrad M (2016) Modification performance of WC nanoparticles in aluminum and an Al–Si casting alloy. Metall Mater Transa B 47(2):1302–1308

    Article  CAS  Google Scholar 

  13. Cao G, Choi H, Konishi H, Kou S, Lakes R, Li X (2008) Mg–6Zn/1.5% Si Cnanocomposites fabricated by ultrasonic cavitation-based solidification processing. J Mater Sci 43(16):5521–5526

    Google Scholar 

  14. Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4(1):65–83

    Google Scholar 

  15. Ceschini L, Dahle A, Gupta M, Jarfors AEW, Jayalakshmi S, Morri A, Toschi S (2017) Aluminum and magnesium metal matrix nanocomposites. Springer, Singapore.

    Google Scholar 

  16. Chan WM, Cheng FT, Leung LK, Horylev RJ, Yue TM (1998) Corrosion behavior of magnesium alloy AZ91 and its MMC in NaCl solution. Corros Rev 16(1–2):43–52

    Article  CAS  Google Scholar 

  17. Chen LY, Konishi H, Fehrenbacher A, Ma C, Xu JQ, Choi H, Li XC (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr Mater 67(1):29–32

    Google Scholar 

  18. Chen LY, Peng JY, Xu JQ, Choi H, Li XC (2013) Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing. Scr Mater 69(8):634–637

    Google Scholar 

  19. Dey A, Pandey KM (2015) Magnesium metal matrix composites—A review. Rev Adv Mater Sci 42(1)

    Google Scholar 

  20. Dieringa H (2018) Processing of magnesium-based metal matrix nanocomposites by ultrasound-assisted particle dispersion: a review. Metals 8(6):431

    Google Scholar 

  21. Endo M, Hayashi T, Itoh I, Kim YA, Shimamoto D, Muramatsu H, Koide S (2008) An anticorrosive magnesium/carbon nanotube composite. Appl Phys Lett 92(6):063105

    Article  CAS  Google Scholar 

  22. Erman A, Groza J, Li X, Choi H, Cao G (2012) Nanoparticle effects in cast Mg-1 wt% SiC nano-composites. Mater Sci Eng: A 558:39–43

    Article  CAS  Google Scholar 

  23. Falcon LA, Bedolla B, Lemus J, Leon C, Rosales I, Gonzalez-Rodriguez JG (2011) Corrosion behavior of Mg–Al/TiC composites in NaCl solution. Int J Corr

    Google Scholar 

  24. Fukuda H, Szpunar JA, Kondoh K, Chromik R (2010) The influence of carbon nanotubes on the corrosion behaviour of AZ31B magnesium alloy. Corros Sci 52(12):3917–3923

    Article  CAS  Google Scholar 

  25. Garcés G, Rodríguez M, Pérez P, Adeva P (2010) Microstructural and mechanical characterisation of WE54–SiC composites. Mater Sci Eng, a 527(24–25):6511–6517

    Article  CAS  Google Scholar 

  26. Ghasali E, Bordbar-Khiabani A, Alizadeh M, Mozafari M, Niazmand M, Kazemzadeh H, Ebadzadeh T (2019) Corrosion behavior and in-vitro bioactivity of porous Mg/Al2O3 and Mg/Si3N4 metal matrix composites fabricated using microwave sintering process. Mater Chem Phys 225:331–339

    Article  CAS  Google Scholar 

  27. Goh CS, Wei J, Lee LC, Gupta M (2006) Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng: A 423(1–2):153–156

    Article  CAS  Google Scholar 

  28. Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Materialia 55(15):5115–5121

    Google Scholar 

  29. Goh CS, Wei J, Lee LC, Gupta M (2005) Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnol 17(1):7

    Google Scholar 

  30. Gopal PM, Prakash KS, Nagaraja S, Aravinth NK (2017) Effect of weight fraction and particle size of CRT glass on the tribological behaviour of Mg-CRT-BN hybrid composites. Tribol Int 116:338–350

    Article  CAS  Google Scholar 

  31. Gupta M, Wong WLE (2015) Magnesium-based nanocomposites: lightweight materials of the future. Mater Charact 105:30–46

    Article  CAS  Google Scholar 

  32. Gupta M, Hassan SF, Eugene WWL (2006) Development of innovative magnesium based composite formulations using disintegrated melt deposition methodology. TMS Ann Meet 2006:217–226

    Google Scholar 

  33. Habibnejad-Korayem M, Mahmudi R, Ghasemi HM, Poole WJ (2010) Tribological behavior of pure Mg and AZ31 magnesium alloy strengthened by Al2O3 nano-particles. Wear 268(3–4):405–412

    Article  CAS  Google Scholar 

  34. Habibnejad-Korayem M, Mahmudi R, Poole WJ (2009) Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles. Mater Sci Eng: A 519(1–2):198–203

    Article  CAS  Google Scholar 

  35. Hamedan AD, Shahmiri M (2012) Production of A356–1wt% SiC nanocomposite by the modified stir casting method. Mater Sci Eng: A 556:921–926

    Article  CAS  Google Scholar 

  36. Hassan SF, Gupta M (2005) Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A 36(8):2253–2258

    Article  Google Scholar 

  37. Hassan SF, Gupta M (2007) Development of nano-Y2O3 containing magnesium nanocomposites using solidification processing. J Alloy Compd 429(1–2):176–183

    Article  CAS  Google Scholar 

  38. Hassan SF, Gupta M (2006) Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloy compd 419(1–2):84–90

    Google Scholar 

  39. Imamura H, Sakasai N, Fujinaga T (1997) Characterization and hydriding properties of Mg-graphite composites prepared by mechanical grinding as new hydrogen storage materials. J Alloys Compounds 253:34–37

    Google Scholar 

  40. Jia S, Jia SS, Sun G, Yao J (2005) The corrosion behaviour of Mg alloy AZ91D/TiCp metal matrix composite. In: Materials science forum, vol 488. Trans Tech Publications, pp 705–708

    Google Scholar 

  41. Karuppusamy P, Lingadurai K, Sivananth V (2019) To study the role of WC reinforcement and deep cryogenic treatment on AZ91 MMNC wear behavior using multilevel factorial design. J Tribol 141(4):041608

    Article  CAS  Google Scholar 

  42. Karuppusamy P, Lingadurai K, Sivananth V (2019) Influence of cryogenic treatment on As-cast AZ91+ 1.5 wt% WC Mg-MMNC Wear Performance. In: Advances in materials and metallurgy. Springer, Singapore, pp 185–197

    Google Scholar 

  43. Kaviti RVP, Jeyasimman D, Parande G, Gupta M, Narayanasamy R (2018) Investigation on dry sliding wear behavior of Mg/BN nanocomposites. J Magnes Alloy 6(3):263–276

    Google Scholar 

  44. Khandelwal A, Mani K, Srivastava N, Gupta R, Chaudhari GP (2017) Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Compos B Eng 123:64–73

    Google Scholar 

  45. Kleiner S, Beffort O, Wahlen A, Uggowitzer PJ (2002) Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg–Al alloys. J Light Met 2(4):277–280

    Google Scholar 

  46. Kulekci MK (2008) Magnesium and its alloys applications in automotive industry. Int J Adv Manuf Technol 39(9–10):851–865

    Google Scholar 

  47. Labib F, Ghasemi HM, Mahmudi R (2016) Dry tribological behavior of Mg/SiCp composites at room and elevated temperatures. Wear 348:69–79

    Google Scholar 

  48. Lan J, Yang Y, Li X (2004) Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Mater Sci Eng A 386(1–2):284–290

    Google Scholar 

  49. Lee CJ, Huang JC, Hsieh PJ (2006) Mg based nano-composites fabricated by friction stir processing. Scr Mater 54(7):1415–1420

    Google Scholar 

  50. Lekatou A, Karantzalis AE, Evangelou A, Gousia V, Kaptay G, Gácsi Z, Baumli P, Simon A (2015) Aluminium reinforced by WC and TiC nanoparticles (ex-situ) and aluminide particles (in-situ): Microstructure, wear and corrosion behaviour. Mater Des (1980–2015) 65:1121–1135

    Google Scholar 

  51. Li Q, Rottmair CA, Singer RF (2010) CNT reinforced light metal composites produced by melt stirring and by high pressure die casting. Compos Sci Technol 70(16):2242–2247

    Article  CAS  Google Scholar 

  52. Liu SY, Gao FP, Zhang QY, Xue Z, Li WZ (2010) Fabrication of carbon nanotubes reinforced AZ91D composites by ultrasonic processing. Trans Nonferrous Met Soc China 20(7):1222–1227

    Google Scholar 

  53. Malaki M, Xu W, Kasar AK, Menezes PL, Dieringa H, Varma RS, Gupta M (2019) Adv Metal Matrix Nanocompos Metals 9(3):330

    CAS  Google Scholar 

  54. Meenashisundaram GK, Gupta M (2014) Low volume fraction nano-titanium particulates for improving the mechanical response of pure magnesium. J Alloy Compd 593:176–183

    Article  CAS  Google Scholar 

  55. Meenashisundaram GK, Seetharaman S, Gupta M (2014) Enhancing overall tensile and compressive response of pure Mg using nano-TiB2 particulates. Mater Charact 94:178–188

    Article  CAS  Google Scholar 

  56. Mirshahi F, Meratian M (2012) High temperature tensile properties of modified Mg/Mg2Si in situ composite. Mater Des 33:557–562

    Google Scholar 

  57. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419(1–2):344–348

    Google Scholar 

  58. Narayanasamy P, Selvakumar N, Balasundar P (2018) Effect of weight percentage of TiC on their tribological properties of magnesium composites. Mater Today: Proc Elsevier Publ 5(2):6570–6578

    CAS  Google Scholar 

  59. Nguyen QB, Gupta M (2008) Increasing significantly the failure strain and work of fracture of solidification processed AZ31B using nano-Al2O3 particulates. J Alloy Compd 459(1–2):244–250

    Article  CAS  Google Scholar 

  60. Nguyen QB, Sim YHM, Gupta M, Lim CYH (2015) Tribology characteristics of magnesium alloy AZ31B and its composites. Tribol Int 82:464–471

    Article  CAS  Google Scholar 

  61. Nie KB, Deng KK, Wang XJ, Wang T, Wu K (2017) Influence of SiC nanoparticles addition on the microstructural evolution and mechanical properties of AZ91 alloy during isothermal multidirectional forging. Mater Charact 124:14–24

    Article  CAS  Google Scholar 

  62. Nie KB, Wang XJ, Hu XS, Xu L, Wu K, Zheng MY (2011) Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration. Mater Sci Eng: A 528(15):5278–5282

    Article  CAS  Google Scholar 

  63. Nie KB, Wang XJ, Xu L, Wu K, Hu XS, Zheng MY (2012) Effect of hot extrusion on microstructures and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite. J Alloy Compd 512(1):355–360

    Article  CAS  Google Scholar 

  64. Pal A, Poria S, Sutradhar G, Sahoo P (2018) Tribologicalbehavior of Al-WC nano-composites fabricated by ultrasonic cavitation assisted stir-cast method. Mat Res Express 5(3):036521

    Article  CAS  Google Scholar 

  65. Paramsothy M, Chan J, Kwok R, Gupta M (2011a) Adding TiC nanoparticles to magnesium alloy ZK60A for strength/ductility enhancement. J Nanomater 2011:50

    Article  CAS  Google Scholar 

  66. Paramsothy M, Chan J, Kwok R, Gupta M (2011b) Addition of CNTs to enhance tensile/compressive response of magnesium alloy ZK60A. Compos Part A: Appl Sci Manuf 42(2):180–188

    Article  CAS  Google Scholar 

  67. Pardo A, Merino S, Merino MC, Barroso I, Mohedano M, Arrabal R, Viejo F (2009) Corrosion behaviour of silicon–carbide-particle reinforced AZ92 magnesium alloy. Corros Sci 51(4):841–849

    Article  CAS  Google Scholar 

  68. Ponappa K, Aravindan S, Rao PV (2013) Influence of Y2O3 particles on mechanical properties of magnesium and magnesium alloy (AZ91D). J Compos Mater 47(10):1231–1239

    Article  Google Scholar 

  69. Praveenkumar R, Periyasamy P, Mohanavel V, Ravikumar MM (2019) Mechanical and tribological behavior of Mg-matrix composites manufactured by stir casting. Int J Veh Struct Syst (IJVSS) 11(1)

    Google Scholar 

  70. Razavi M, Mobasherpour I (2014) Production of aluminum nano-composite reinforced by tungsten carbide particles via mechanical milling and subsequent hot pressing. Int J Mater Res 105(11):1103–1110

    Article  CAS  Google Scholar 

  71. Sajjadi SA, Ezatpour HR, Beygi H (2011) Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting. Mater Sci Eng: A 528(29–30):8765–8771

    Article  CAS  Google Scholar 

  72. Saravanan RA, Surappa MK (2000) Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite. Mater Sci Eng: A 276(1–2):108–116

    Google Scholar 

  73. Selvam B, Marimuthu P, Narayanasamy R, Anandakrishnan V, Tun KS, Gupta M, Kamaraj M (2014) Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-composites. Mater Des 58:475–481

    Article  CAS  Google Scholar 

  74. Srivatsan TS, Godbole C, Quick T, Paramsothy M, Gupta M (2013) Mechanical behavior of a magnesium alloy nanocomposite under conditions of static tension and dynamic fatigue. J Mater Eng Perform 22(2):439–453

    Google Scholar 

  75. Suresh SM, Mishra D, Srinivasan A, Arunachalam RM, Sasikumar R (2011) Production and characterization of micro and nano Al2O3 particle-reinforced LM25 aluminium alloy composites. J Eng Appl Sci 6(6):94–97

    Google Scholar 

  76. Suslick KS, Didenko Y, Fang MM, Hyeon T, Kolbeck KJ, McNamara III WB, Wong M (1999) Acoustic cavitation and its chemical consequences. Philos Trans R Soc Lond Ser A: Math Phys Eng Sci 357(1751):335–353

    Google Scholar 

  77. Tekumalla S, Bibhanshu N, Shabadi R, Suwas S, Ha TMH, Gupta M (2018) Evolution of texture and asymmetry and its impact on the fatigue behaviour of an in-situ magnesium nanocomposite. Mater Sci Eng: A 727:61–69

    Article  CAS  Google Scholar 

  78. Tun KS, Jayaramanavar P, Nguyen QB, Chan J, Kwok R, Gupta M (2012) Investigation into tensile and compressive responses of Mg–ZnO composites. Mater Sci Technol 28(5):582–588

    Article  CAS  Google Scholar 

  79. Tun KS, Gupta M (2007) Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol 67(13):2657–2664

    Google Scholar 

  80. Wang XJ, Hu XS, Wu K, Zheng MY, Zheng L, Zhai QJ (2009) The interfacial characteristic of SiCp/AZ91 magnesium matrix composites fabricated by stir casting. J Mater Sci 44(11):2759–2764

    Article  CAS  Google Scholar 

  81. Xu JQ, Chen LY, Choi H, Li XC (2012) Theoretical study and pathways for nanoparticle capture during solidification of metal melt. J Phys: Condens Matter 24(25):255304

    CAS  Google Scholar 

  82. Yar AA, Montazerian M, Abdizadeh H, Baharvandi HR (2009) Microstructure and mechanical properties of aluminum alloy matrix composite reinforced with nano-particle MgO. J Alloy Compd 484(1–2):400–404

    Article  CAS  Google Scholar 

  83. Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39(20):6153–6171

    Article  CAS  Google Scholar 

  84. Zhang L, Luo X, Liu J, Leng Y, An L (2018) Dry sliding wear behavior of Mg–SiC nanocomposites with high volume fractions of reinforcement. Mater Lett 228:112–115

    Article  CAS  Google Scholar 

  85. Zhang C, Zhang T, Wang Y, Wei F, Shao Y, Meng G, Wu K (2015) Effect of SiC particulates on the corrosion behavior of extruded AZ91/SiCp composites during the early stage of exposure. J Electrochem Soc 162(14):C754–C766

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S., Poria, S., Sutradhar, G., Sahoo, P. (2021). Mg-WC Nanocomposites—Recent Advances and Perspectives. In: Sahoo, S. (eds) Recent Advances in Layered Materials and Structures. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-33-4550-8_8

Download citation

Publish with us

Policies and ethics