Skip to main content
Log in

Influence of High Rotational Speeds on the Microstructure and Properties of Friction Stir Manufactured ZK61 Magnesium Alloy-Hydroxyapatite Composites

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Friction stir processing (FSP) with high rotational speeds was successfully adopted to fabricate nano-hydroxyapatite (nHA)-reinforced ZK61 magnesium matrix composites (MMCs). And the influence of high rotational speeds on ZK61-nHA composites manufactured by FSP was investigated. The microstructure studies indicated that a higher rotational speed for FSP contributed to the formation of grain refinement and the uniform distribution of nHA particles. The average grain size was refined from 150 to 2.8 and 2.2 μm at the stirred zones of FSP ZK61 and ZK61-nHA composites, respectively. And the uniformity and average values of microhardness were also positively correlated with the increase in rotational speeds. Moreover, corrosion tests revealed that samples prepared at 5000 rpm obviously had better corrosion resistance (Ecorr = −1.484 V and Icorr = 1.536 × 10–5 A/cm2), which greatly improved the relative growth rate (RGR) of ZK61-nHA samples to 81.60% in the CCK-8 cell viability assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gu X N, Zheng Y F, Front J, Front. Mater. Sci. 4 (2010) 111.

    Article  Google Scholar 

  2. Zheng Y F, Gu X N, Witte F, Mat. Sci. Eng. R. 77 (2014) 1.

    Article  Google Scholar 

  3. Staiger M P, Pietak A M, Huadmai J, Dias G, Biomaterials. 27 (2006) 1728.

    Article  CAS  Google Scholar 

  4. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth C J, Windhagen H, Biomaterials. 26 (2005) 3557.

    Article  CAS  Google Scholar 

  5. Karageorgiou V, Kaplan D, Biomaterials. 26 (2005) 5474.

    Article  CAS  Google Scholar 

  6. Khodabakhshi F, Simchi A, Kokabi A H, Surf. Coat. Tech. 309 (2017) 114.

    Article  CAS  Google Scholar 

  7. Khalajabadi S Z, Kadir M, Izman S, Ebrahimi-Kahrizsangi R, Mater. Design. 25 (2015) 1223.

    Article  Google Scholar 

  8. Campo R D, Savoini B, Munoz M A, Garces G, J. Mech. Behav. Biomed. 39 (2014) 238.

    Article  CAS  Google Scholar 

  9. Khademi A R, Afsari A, T. Indian. I. Metals. 70 (2017) 1193.

    Article  CAS  Google Scholar 

  10. Patel M, Murugesan J, T. Indian. I. Metals. 75 (2022) 1525.

    Article  CAS  Google Scholar 

  11. Li Y, Lu K J, Zheng L, Zhang Y C, Xu Y H, Xu F, Gao H M, T. Indian. I. Metals. 75 (2022) 1471.

    Article  Google Scholar 

  12. Hossein E, Habiibolahzade A, Mohammad T, J. Alloy Compd. 725 (2017) 1044.

    Article  Google Scholar 

  13. Nakka P K, Chikkala N, Desetti S, Daida A, Janyavula N S, Kumar S A, Irulappasamy S, Badisha V, Ma J, Buradagunta R S, Mater. Technol. 33 (2018) 603.

    Article  CAS  Google Scholar 

  14. Sunil B R, Kumar T S S, Chakkingal U, Nandakumar V, Doble M, Mater. Sci. Eng: C. 39 (2014) 315.

    Article  Google Scholar 

  15. Ho H Y, Man K, Joshi S S, Pantawane M V, Wu T C, Yang Y, Dahotre N B, Bioact. Mater. 4 (2020) 891.

    Article  Google Scholar 

  16. Qin D Q, Shen H R, Shen Z K, Chen H Y, Fu L, J. Manuf. Process. 36 (2018) 22.

    Article  Google Scholar 

  17. Butola R, Tyagi L, Singari R M, Murtaza Q, Kumar H, Nayak D, Mater. Res. Express. 8 (2021) 1.

    Article  Google Scholar 

  18. Zhang J Y, Upadhyay P, Hovanski Y, Field D P, Metal. Mater. Trans. A. 49 (2018) 210.

    Article  CAS  Google Scholar 

  19. Kokubo T, Takadama H, Biomaterials 27 (2006) 2907.

    Article  CAS  Google Scholar 

  20. Asadia P, Mahdavinejada R A, Tutunchilar S, Mater. Sci. Eng. A. 528 (2011) 6469.

    Article  Google Scholar 

  21. Lu Z Y, Huang X Q, Huang J Z, Front. Mater. 8 (2021) 641928.

    Article  Google Scholar 

  22. Z. Ma, Metal. Mater. Trans. A. 39 (2008) 642.

    Article  Google Scholar 

  23. Huang Y, Wang Y, Chen Z, Rare. Metal. Mat. Eng. 41 (2012) 1751.

    CAS  Google Scholar 

  24. Cheng T Q, Li Z H, Maeri. Sci. Forum. 1026 (2021) 84.

    Article  Google Scholar 

  25. Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, Dietzel W, Hort N, Biomaterials, 28 (2007) 2163.

    Article  CAS  Google Scholar 

  26. Pardo A, Feliu S, Merino MC, Arrabal R, Matykina E, Int. J. Corrros. 2010 (2009) 1.

    Google Scholar 

  27. Shi Z, Atrens A, Corros. Sci. 53 (2011) 226.

    Article  CAS  Google Scholar 

  28. Yang P X, Ye S B, Feng B J, liu J H, Huang S S, Liu G N, Zhang W D, Tang W N, Zhu S J, Zhang S J, Materials. 14 (2021) 7140.

    Article  CAS  Google Scholar 

  29. Wolf F I, Cittadini A R M, Front. Biosci. 4 (1999) D607.

    Article  CAS  Google Scholar 

  30. Suchank W, Yoshimura M. J. Mater. Res. 1 (1998) 94.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Key Research and Development Projects of Shaanxi Province (Grant No. 2020ZDLGY13-04) and National Natural Science Foundation of China (Grant No. 51575450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Ma, J., Qin, D. et al. Influence of High Rotational Speeds on the Microstructure and Properties of Friction Stir Manufactured ZK61 Magnesium Alloy-Hydroxyapatite Composites. Trans Indian Inst Met 76, 729–739 (2023). https://doi.org/10.1007/s12666-022-02770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-022-02770-8

Keywords

Navigation