Skip to main content
Log in

Grindability and surface integrity of in situ TiB2 particle reinforced aluminum matrix composites

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In situ TiB2 particle-reinforced aluminum matrix composite (in situ TiB2/Al composites) is a new kind of metal matrix composite. With in situ synthesis method, a better adhesion at interfaces is achieved and hence improves mechanical properties. However, few literature focused on its grindability and surface integrity which limited its widespread use in industries. In this paper, the effects of grinding parameters and grinding wheels on the grinding performance of in situ TiB2/Al composites are investigated experimentally. The results show that the grinding performance is mostly affected by the wheel speed and grinding depth. The signal alumina wheel has the best grindability in grinding in situ TiB2/Al composites. Unlike other ex situ PMMCs, the in situ TiB2/Al composite is removed in a ductile-mode and pull-out or fractured particles are not found on the ground surface. Surface thermal softening effect and residual tensile stress indicate thermal effect dominate over mechanical effect in the grinding process. These results can be used to understand the material removal mechanism of grinding in situ TiB2/Al composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hong TR, Li XF, Wang HW, Chen D, Wang K (2015) Effects of TiB2 particles on aging behavior of in-situ TiB2/Al-Cu-Mg composites. Mater Sci Eng A 624:110–117

    Article  Google Scholar 

  2. Wang M, Chen D, Chen Z, Wu Y, Wang F, Ma N, Wang H (2014) Mechanical properties of in-situ TiB2/A356 composites. Mater Sci Eng: A 590:246–254

    Article  Google Scholar 

  3. Zhong ZW, Hung NP (2000) Diamond turning and grinding of aluminum-based metal matrix composites. Mater Manuf Process 15(6):853–865

    Article  Google Scholar 

  4. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites—a review. J Mater Sci 26(5):1137–1156

    Article  Google Scholar 

  5. Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R-Rep 29(3–4):49–113

    Article  Google Scholar 

  6. Di Ilio A, Paoletti A, D’Addona D (2009) Characterization and modelling of the grinding process of metal matrix composites. CIRP Ann Manuf Technol 58(1):291–294

    Article  Google Scholar 

  7. Kılıçkap E, Çakır O, Aksoy M, İnan A (2005) Study of tool wear and surface roughness in machining of homogenised SiC-p reinforced aluminium metal matrix composite. J Mater Process Technol 164:862–867

    Google Scholar 

  8. Ciftci I, Turker M, Seker U (2004) Evaluation of tool wear when machining SiCp-reinforced Al-2014 alloy matrix composites. Mater Des 25(3):251–255

    Article  Google Scholar 

  9. Arsecularatne JA, Zhang LC, Montross C (2006) Wear and tool life of tungsten carbide, PCBN and PCD cutting tools. Int J Mach Tools Manuf 46(5):482–491

    Article  Google Scholar 

  10. Jawahir IS, Brinksmeier E, M’Saoubi R, Aspinwall DK, Outeiro JC, Meyer D, Umbrello D, Jayal AD (2011) Surface integrity in material removal processes: recent advances. CIRP Ann Manuf Technol 60(2):603–626

    Article  Google Scholar 

  11. Klocke F, Soo SL, Karpuschewski B, Webster JA, Novovic D, Elfizy A, Axinte DA, Tonissen S (2015) Abrasive machining of advanced aerospace alloys and composites. CIRP Ann Manuf Technol 64(2):581–604

    Article  Google Scholar 

  12. Yao CF, Wang T, Ren JX, Xiao W (2014) A comparative study of residual stress and affected layer in Aermet100 steel grinding with alumina and CBN wheels. Int J Adv Manuf Technol 74:125–137

    Article  Google Scholar 

  13. Chakraborty K, Chattopadhyay AB, Chakrabarti AK (2003) A study on the grindability of niobium microalloyed forging quality HSLA steels. J Mater Process Technol 141:404–410

    Article  Google Scholar 

  14. Mao C, Tang XJ, Zou HF, Zhou ZX, Yin WW (2012) Experimental investigation of surface quality for minimum quantity oil–water lubrication grinding. Int J Adv Manuf Technol 59:93–100

    Article  Google Scholar 

  15. Zhong ZW, Hung NP (2002) 1-Grinding of alumina/aluminum composites. J Mater Process Technol 123:13–17

    Article  Google Scholar 

  16. Zhong ZW (2003) Grinding of aluminium-based metal matrix composites reinforced with Al2O3 or SIC particles. Int J Adv Manuf Technol 21:79–83

    Article  Google Scholar 

  17. Di Ilio A, Paoletti A (2000) A comparison between conventional abrasives and superabrasives in grinding of SiC-aluminium composites. Int J Mach Tools Manuf 40:173–184

    Article  Google Scholar 

  18. Kwak JS, Kim YS (2008) Mechanical properties and grinding performance on aluminum-based metal matrix composites. J Mater Process Technol 201:596–600

    Article  Google Scholar 

  19. Zhao B, Ding WF, Dai JB, Xi XX, Xu JH (2014) A comparison between conventional speed grinding and super-high speed grinding of (TiCp + TiBw)/Ti-6Al-4V composites using vitrified CBN wheel. Int J Adv Manuf Technol 72:69–75

    Article  Google Scholar 

  20. Ronald BA, Vijayaraghavan L, Krishnamurthy R (2009) Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites. Mater Des 30:679–686

    Article  Google Scholar 

  21. Suresh S, Shenbag N, Moorthi V (2012) Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities. Procedia Eng 38:89–97

    Article  Google Scholar 

  22. Ramesh CS, Ahamed A, Channabasappa BH, Keshavamurthy R (2010) Development of Al 6063-TiB2 in situ composites. Mater Des 31:2230–2236

    Article  Google Scholar 

  23. Wang M, Chen Z, Chen D, Wu Y, Li X, Ma N, Wang H (2014) The constitutive model and processing map for in-situ 5wt% TiB2 reinforced 7050 Al alloy matrix composite. Key Eng Mater 575:11–19

    Article  Google Scholar 

  24. Azizi A, Mohamadyari M (2015) Modeling and analysis of grinding forces based on the single grit scratch. Int J Adv Manuf Technol 78:1223–1231

    Article  Google Scholar 

  25. Malkin S (1989) Grinding technology: theory and applications of machining with abrasives. Wiley, Chichester

    Google Scholar 

  26. Ding WF, Zhao BA, Xu JH, Yang CY, Fu YC, Su HH (2014) Grinding behavior and surface appearance of (TiCp + TiBw)/Ti-6Al-4V titanium matrix composites. Chin J Aeronaut 27(5):1334–1342

    Article  Google Scholar 

  27. Ren YH, Zhang B, Zhou ZX (2009) Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Ann Manuf Technol 58(1):299–302

    Article  Google Scholar 

  28. Sin H, Saka N, Suh N (1979) Abrasive wear mechanisms and the grit size effect. Wear 55(1):163–190

    Article  Google Scholar 

  29. Ding WF, Xu JH, Chen ZZ, Su HH, Fu YC (2010) Grindability and surface integrity of cast nickel-based superalloy in creep feed grinding with brazed CBN abrasive wheels. Chin J Aeronaut 23(4):501–510

    Article  Google Scholar 

  30. Davim JP (2010) Surface integrity in machining. Springer, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruisong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K., Wang, W., Jiang, R. et al. Grindability and surface integrity of in situ TiB2 particle reinforced aluminum matrix composites. Int J Adv Manuf Technol 88, 887–898 (2017). https://doi.org/10.1007/s00170-016-8841-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-8841-8

Keywords

Navigation