Skip to main content
Log in

Effect of TiB2 Particles on the Morphological, Mechanical and Corrosion Behaviour of Al7075 Metal Matrix Composite Produced Using Stir Casting Process

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Aluminium metal matrix composites are lightweight high-performance materials mostly applicable in aerospace, automobile and marine applications. In this study, the morphological, mechanical and corrosion behaviour of Al7075 metal matrix composites were investigated to find the effect of reinforcement of TiB2 particles for various weight percentage. Al7075-TiB2 composites were developed by reinforcing the 3–5 µm size TiB2 ceramic particles using stir casting process. The particles with different weight percentage of 2, 4, 6 and 8 were uniformly reinforced with the help of the mechanical stirrer. The energy dispersive X-ray diffraction (EDAX) pattern confirms the presence of TiB2 particles in the composites. SEM and optical microstructures clearly revealed the uniform distribution of TiB2 particles in the aluminium matrix. The additions of TiB2 particles enhance the tensile strength and micro hardness due to the strong interface and load sharing between the matrix and the reinforcement particles. Dry sliding wear test was conducted by varying the applied load and sliding distance. SEM microstructure of worn surfaces shows that addition of TiB2 particles decreases the wear rate due to the presence of stiffer and stronger reinforcement particles. The electrochemical potentiodynamic polarization and salt spray test were also conducted to study the corrosion behaviour of the Al-TiB2 composites. SEM microstructures confirm the occurrence of pitting corrosion and shows that addition of TiB2 particles improves the corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26

Similar content being viewed by others

Data Availability

The raw processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. T. Dursun, C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Des. (1980–2015) 56, 862–871 (2014). https://doi.org/10.1016/j.matdes.2013.12.002

    Article  CAS  Google Scholar 

  2. J. Suresh Kumar, K. Kalaichelvan, Taguchi-grey multi-response optimization on structural parameters of honeycomb core sandwich structure for low velocity impact test. SILICON 10, 879–889 (2017). https://doi.org/10.1007/s12633-016-9544-3

    Article  CAS  Google Scholar 

  3. R. Gecu, A. Karaaslan, Sliding wear of the Ti-reinforced al matrix Bi-metal composite: a potential replacement to conventional SiC-reinforced composites for automotive application. Int. Metalcast. 13, 641–652 (2019). https://doi.org/10.1007/s40962-018-0281-9

    Article  CAS  Google Scholar 

  4. M. Manoj, G.R. Jinu, T. Muthuramalingam, Multi response optimization of AWJM process parameters on machining TiB2 particles reinforced Al7075 composite using Taguchi-DEAR methodology. SILICON 10(5), 2287–2293 (2018). https://doi.org/10.1007/s12633-018-9763-x

    Article  CAS  Google Scholar 

  5. M.F. Ibrahim, G.H. Garza-Elizondo, A.M. Samuel, F.H. Samuel, Optimizing the heat treatment of high-strength 7075-type wrought alloys: a metallographic study. Int. Metalcast. 10, 264–275 (2016). https://doi.org/10.1007/s40962-016-0038-2

    Article  Google Scholar 

  6. J. Joseph, B.S. Pillai, J. Jayanandan, J. Jayagopan, S. Nivedh, U.S.S. Balaji, K.V. Shankar, Mechanical behaviour of age hardened A356/TiC metal matrix composite. Pap. Present. Mater. Today Proc. 38, 2127–2132 (2020). https://doi.org/10.1016/j.matpr.2020.05.013

    Article  CAS  Google Scholar 

  7. V. Anilkumar, K.V. Shankar, M. Balachandran, J. Joseph, S. Nived, J. Jayanandan, J. Jayagopan, U.S. Surya Balaji, Impact of heat treatment analysis on the wear behaviour of Al–14.2Si–0.3Mg–TiC composite using response surface methodology. Tribol. Ind. (2021). https://doi.org/10.24874/ti.988.10.20.04

    Article  Google Scholar 

  8. P. Ajay Kumar, P. Rohatgi, D. Weiss, 50 Years of foundry-produced metal matrix composites and future opportunities. Int. Metalcast. 14, 291–317 (2020). https://doi.org/10.1007/s40962-019-00375-4

    Article  CAS  Google Scholar 

  9. C. Wang, M. Wang, B. Yu, D. Chen, P. Qin, M. Feng, Q. Dai, The grain refinement behavior of TiB2 particles prepared with in situ technology. Mater. Sci. Eng. A 459(1–2), 238–243 (2007). https://doi.org/10.1016/j.msea.2007.01.013

    Article  CAS  Google Scholar 

  10. C. Mallikarjuna, S.M. Shashidhara, U.S. Mallik, K.I. Parashivamurthy, Grain refinement and wear properties evaluation of aluminum alloy 2014 matrix-TiB2 in situ composites. Mater. Des. 32(6), 3554–3559 (2011). https://doi.org/10.1016/j.matdes.2011.01.036

    Article  CAS  Google Scholar 

  11. U. Aybarç, O. Ertuğrul, M.O. Seydibeyoğlu, Effect of Al2O3 particle size on mechanical properties of ultrasonic-assisted stir-casted Al A356 matrix composites. Int. Metalcast. 15, 638–649 (2021). https://doi.org/10.1007/s40962-020-00490-7

    Article  CAS  Google Scholar 

  12. M. Manoj, G.R. Jinu, T. Muthuramalingam, R. Leo Bright Singh, Synthetization and investigation on mechanical characteristics of aluminium alloy 7075 with TiB2 composite. J. Ceram. Process. Res 22(4), 475–481 (2021). https://doi.org/10.36410/jcpr.2021.22.4.475

    Article  Google Scholar 

  13. S. Kumar, M. Chakraborty, V.S. Sarma, B.S. Murty, Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear 265, 134–142 (2008). https://doi.org/10.1016/j.wear.2007.09.007

    Article  CAS  Google Scholar 

  14. M. Shayan, B. Eghbali, B. Niroumand, Synthesis and characterization of AA2024–SiO2 nanocomposites through the vortex method. Int. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00574-y

    Article  Google Scholar 

  15. V.S. Ayar, M.P. Sutaria, Development and characterization of In Situ AlSi5Cu3/TiB2 composites. Int. Metalcast. 14, 59–68 (2020). https://doi.org/10.1007/s40962-019-00328-x

    Article  CAS  Google Scholar 

  16. D.M. Shinde, P. Sahoo, Influence of speed and sliding distance on the tribological performance of submicron particulate reinforced Al-12Si/15Wt% B4C composite. Int. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00636-1

    Article  Google Scholar 

  17. A. Bhowmik, D. Dey, A. Biswas, Comparative study of microstructure, physical and mechanical characterization of SiC/TiB2 reinforced aluminium matrix composite. SILICON 13(6), 2003–2010 (2021). https://doi.org/10.1007/s12633-020-00591-2

    Article  CAS  Google Scholar 

  18. B.F. Schultz, J.B. Ferguson, P.K. Rohatgi, Microstructure and hardness of Al2O3 nanoparticle reinforced Al–Mg composites fabricated by reactive wetting and stir mixing. Mater. Sci. Eng. A 530, 87–97 (2011). https://doi.org/10.1016/j.msea.2011.09.042

    Article  CAS  Google Scholar 

  19. M. Rahimian, N. Parvin, N. Ehsani, The effect of production parameters on microstructure and wear resistance of powder metallurgy Al–Al2O3 composite. Mater. Des. 32, 1031–1038 (2011). https://doi.org/10.1016/j.matdes.2010.07.016

    Article  CAS  Google Scholar 

  20. C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061-TiB2 in-situ composites. Mater. Sci. Eng. A 528(12), 4125–4132 (2011). https://doi.org/10.1016/j.msea.2011.02.024

    Article  CAS  Google Scholar 

  21. K. Sivaprasad, S.K. Babu, S. Natarajan, R. Narayanasamy, B.A. Kumar, G. Dinesh, Study on abrasive and erosive wear behaviour of Al 6063/TiB2 in situ composites. Mater. Sci. Eng. A 498(1–2), 495–500 (2008). https://doi.org/10.1016/j.msea.2008.09.003

    Article  CAS  Google Scholar 

  22. P. Senthil Kumar, V. Kavimani, K. Soorya Prakash, V.M. Krishna, Effect of TiB2 on the corrosion resistance behavior of in situ Al composites. Int. Metalcast. 14, 84–91 (2020). https://doi.org/10.1007/s40962-019-00330-3

    Article  CAS  Google Scholar 

  23. M. Ramesh, D.D. Jafrey, M. Ravichandran, Investigation on mechanical properties and wear behaviour of titanium diboride reinforced composites. FME Trans. 47(4), 873–879 (2019). https://doi.org/10.5937/fmet1904873R

    Article  Google Scholar 

  24. H.M. Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced Al7075 aluminum alloy cast composites. Mater. Des. 44, 438–445 (2013). https://doi.org/10.1016/j.matdes.2012.08.008

    Article  CAS  Google Scholar 

  25. Y. Pazhouhanfar, B. Eghbali, Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater. Sci. Eng. A. 710, 172–180 (2018). https://doi.org/10.1016/j.msea.2017.10.087

    Article  CAS  Google Scholar 

  26. M.K. Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 1980–2015(66), 150–161 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  CAS  Google Scholar 

  27. R.G. Munro, Material properties of titanium diboride. J. Res. Natl. Inst. Stand. Technol. 105(5), 709–720 (2000). https://doi.org/10.6028/jres.105.057

    Article  CAS  Google Scholar 

  28. S. Shahriyari, S. Pashmforoosh, O. Mirzaee, Investigation of the effect of Sr on the mechanical properties and microstructure of nano-alumina reinforced aluminum matrix composites by the vortical casting method. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00715-8

    Article  Google Scholar 

  29. S. Pashmforoosh, S. Shahriyari, O. Mirzaee, Evaluation of mechanical and microstructure properties of Mg-modified aluminum matrix composite by vortical casting method. Met. Mater. Int. 27, 3026–3038 (2021). https://doi.org/10.1007/s12540-020-00639-3

    Article  CAS  Google Scholar 

  30. ASTM E8/E8M-21, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2021).

  31. N. Hansen, Hall-Petch relation and boundary strengthening. Scr. Mater. 51(8), 801–806 (2004). https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  CAS  Google Scholar 

  32. Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483, 148–152 (2008). https://doi.org/10.1016/j.msea.2006.10.184

    Article  CAS  Google Scholar 

  33. ASTM G99-95a(2000)e1, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus (ASTM International, West Conshohocken, PA, 2000)

  34. S. Liu, Y. Wang, T. Muthuramalingam, G. Anbuchezhiyan, Effect of B4C and MoS2 reinforcement on micro structure and wear properties of aluminum hybrid composite for automotive applications. Comos. B Eng. 176, 107329 (2019). https://doi.org/10.1016/j.compositesb.2019.107329

    Article  CAS  Google Scholar 

  35. S. Suresh, N. ShenbagaVinayagaMoorthi, S.C. Vettivel, N. Selvakumar, Mechanical behavior and wear prediction of stir cast Al-TiB2 composites using response surface methodology. Mater. Des. 59, 383–396 (2014). https://doi.org/10.1016/j.matdes.2014.02.053

    Article  CAS  Google Scholar 

  36. ASTM B. Standard Practice for Operating Salt Spray (fog) Apparatus, 1997 edition (ASTM International, 2011)

  37. B. Zaid, D. Saidi, A. Benzaid, S. Hadji, Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corros. Sci. 50(7), 1841–1847 (2008). https://doi.org/10.1016/j.corsci.2008.03.006

    Article  CAS  Google Scholar 

  38. R.T. Loto, A. Adeleke, Corrosion of aluminum alloy metal matrix composites in neutral chloride solutions. J. Fail. Anal. Prev. 16(5), 874–885 (2016). https://doi.org/10.1007/s11668-016-0157-3

    Article  Google Scholar 

  39. S. Gopalakrishnan, N. Murugari, Production and wear characterization of AA 6061 matrix titanium diboride particulate reinforced composite by enhanced stir casting method. Compos. B Eng. 43, 302–308 (2012). https://doi.org/10.1016/j.compositesb.2011.08.049

    Article  CAS  Google Scholar 

  40. A. Aballe, M. Bethencourt, F.J. Botana, M.J. Cano, M. Marcos, Localized alkaline corrosion of alloy AA5083 in neutral 3.5% NaCl solution. Corros. Sci. 43(9), 1657–1674 (2001). https://doi.org/10.1016/S0010-938X(00)00166-9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their sincere thanks and gratitude to Department of Production Technology, MIT campus, Anna University, Chennai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manoj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoj, M., Jinu, G.R., Kumar, J.S. et al. Effect of TiB2 Particles on the Morphological, Mechanical and Corrosion Behaviour of Al7075 Metal Matrix Composite Produced Using Stir Casting Process. Inter Metalcast 16, 1517–1532 (2022). https://doi.org/10.1007/s40962-021-00696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00696-3

Keywords

Navigation