Skip to main content
Log in

An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In the present work, a highly efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization is proposed. In this approach, high-resolution optimization results can be obtained with a smaller number of design variables and a relatively low degree of freedoms (DOFs). This is achieved by taking the advantage that the topology optimization model and the finite element analysis model are totally decoupled in the MMC-based problem formulation. A coarse mesh is used for structural response analysis and a design domain partitioning strategy is introduced to preserve the topological complexity of the optimized structures. Numerical examples are then provided so as to demonstrate that with the use of the proposed approach, computational efforts can be saved substantially for large-scale topology optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Engng 71(2):197–224

    Article  MathSciNet  Google Scholar 

  • HyperWorks A (2013) OptiStruct-12.0 user’s guide. Altair Engineering Inc

  • Simulia D (2011) Topology and shape optimization with Abaqus. In: Dassault Systemes Inc

    Google Scholar 

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84–86

    Article  Google Scholar 

  • Borrvall T, Petersson J (2011) Large-scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190:6201–6229

    Article  Google Scholar 

  • Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9–10):2623–2641

    Article  MathSciNet  Google Scholar 

  • Vemaganti K, Lawrence WE (2005) Parallel methods for optimality criteria-based topology optimization. Comput Methods Appl Mech Engng 194:3637–3667

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Rupp CJ, Maute K, Dunn ML (2007) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329–345

    Article  MathSciNet  Google Scholar 

  • Mahdavi A, Balaji R, Frecker M, Mockensturm EM (2006) Topology optimization of 2D continua for minimum compliance using parallel computing. Struct Multidiscip Optim 32(2):121–132

    Article  Google Scholar 

  • Aage N, Poulsen TH, Gersborg-Hansen A, Sigmund O (2007) Topology optimization of large scale stokes flow problems. Struct Multidiscip Optim 35(2):175–180

    Article  MathSciNet  Google Scholar 

  • Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505

    Article  MathSciNet  Google Scholar 

  • Wang S, Sturler ED, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Engng 69(12):2441–2468

    Article  MathSciNet  Google Scholar 

  • Amir O, Bendsøe MP, Sigmund O (2009a) Approximate reanalysis in topology optimization. Int J Numer Methods Engng 78(12):1474–1491

    Article  MathSciNet  Google Scholar 

  • Amir O, Stolpe M, Sigmund O (2009b) Efficient use of iterative solvers in nested topology optimization. Struct Multidiscip Optim 42(1):55–72

    Article  Google Scholar 

  • Amir O, Sigmund O (2010) On reducing computational effort in topology optimization: how far can we go? Struct Multidiscip Optim 44(1):25–29

    Article  Google Scholar 

  • Kim JE, Jang GW, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473–6496

    Article  Google Scholar 

  • Stainko R (2005) An adaptive multilevel approach to the minimal compliance problem in topology optimization. Commun Numer Meth Engng 22(2):109–118

    Article  MathSciNet  Google Scholar 

  • Guest JK, Smith Genut LC (2010) Reducing dimensionality in topology optimization using adaptive design variable fields. Int J Numer Methods Engng 81(8):1019–1045

    MATH  Google Scholar 

  • Yoon GH (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Engng 199:1744–1763

    Article  MathSciNet  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2009) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525–539

    Article  MathSciNet  Google Scholar 

  • Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Engng 92(6):507–530

    Article  MathSciNet  Google Scholar 

  • Nguyen TH, Le CH, Hajjar JF (2017) Topology optimization using the p-version of the finite element method. Struct Multidiscip Optim 56(3):571–586

    Article  MathSciNet  Google Scholar 

  • Groen JP, Langelaar M, Sigmund O, Ruess M (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Engng 110(10):903–920

    Article  MathSciNet  Google Scholar 

  • Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Engng 61(2):238–254

    Article  MathSciNet  Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4–5):401–424

    Article  Google Scholar 

  • Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on Heaviside functions. Struct Multidiscip Optim 41(4):495–505

    Article  MathSciNet  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014a) Explicit feature control in structural topology optimization via level set method. Comput Methods Appl Mech Engng 272:354–378

    Article  MathSciNet  Google Scholar 

  • Guo X, Zhang WS, Zhong W (2014b) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. ASME J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Zhang WS, Li D, Zhang J, Guo X (2016a) Minimum length scale control in structural topology optimization based on the moving morphable components (MMC) approach. Comput Methods Appl Mech Engng 311:327–355

    Article  MathSciNet  Google Scholar 

  • Guo X, Zhou JH, Zhang WS, Du ZL, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Engng 323:27–63

    Article  MathSciNet  Google Scholar 

  • Deng J, Chen W (2016) Design for structural flexibility using connected morphable components based topology optimization. Sci China Tech Sci 59(6):839–851

    Article  Google Scholar 

  • Guo X, Zhang WS, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Engng 310:711–748

    Article  MathSciNet  Google Scholar 

  • Zhang WS, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

    Article  MathSciNet  Google Scholar 

  • Zhang WS, Yang WY, Zhou JH, Li D, Guo X (2017a) Structural topology optimization through explicit boundary evolution. ASME J Appl Mech 84(1):011011

    Article  Google Scholar 

  • Zhang WS, Li D, Yuan J, Song JF, Guo X (2017b) A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput Mech 59(4):647–665

    Article  MathSciNet  Google Scholar 

  • Zhang WS, Li D, Zhou JH, Du ZL, Li BJ, Guo X (2018) A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput Methods Appl Mech Engng 334:381–413

    Article  MathSciNet  Google Scholar 

  • Lei X, Liu C, Du ZL, Zhang WS, Guo X (2018) Machine learning driven real time topology optimization under moving morphable component (MMC)-based framework. ASME J Appl Mech 86(1):011004

  • Liu C, Du ZL, Zhang WS, Zhu YC, Guo X (2017) Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. ASME J Appl Mech 84(8):081008

    Article  Google Scholar 

  • Norato JA, Bell EK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements. Comput Methods Appl Mech Engng 293:306–327

    Article  MathSciNet  Google Scholar 

  • Hoang VN, Jang JW (2017) Topology optimization using moving morphable bars for versatile thickness control. Comput Methods Appl Mech Engng 317:153–173

    Article  MathSciNet  Google Scholar 

  • Hou WB, Gai YD, Zhu XF, Wang X, Zhao C, Xu LK, Jiang K, Hu P (2017) Explicit isogeometric topology optimization using moving morphable components. Comput Methods Appl Mech Engng 326:694–712

    Article  MathSciNet  Google Scholar 

  • Takalloozadeh M, Yoon GH (2017) Implementation of topological derivative in the moving morphable components approach. Finite Elem Anal Des 134:16–26

    Article  Google Scholar 

  • Sun JL, Tian Q, Hu HY (2018) Topology optimization of a three-dimensional flexible multibody system via moving morphable components. ASME J Comput Nonlinear Dyn 13(2). 021010

    Article  Google Scholar 

  • Kreisselmeier G, Steinhauser R (1979) Systematic control design by optimizing a vector performance index. In: IFAC symposium on computer-aided design of control systems, international federation of active controls. Zurich, Switzerland

  • Bendsøe MP (1995) Optimization of structural topology shape and material. Springer, New York

    Book  Google Scholar 

  • Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality of Michell structures. Struct Multidiscip Optim 54(2):361–373

    Article  MathSciNet  Google Scholar 

  • Dewhurst P (2001) Analytical solutions and numerical procedures for minimum-weight Michell structures. J Mech Phys Solids 49(3):445–467

    Article  Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2010) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16

    Article  Google Scholar 

  • Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50(6):1175–1196

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Engng 24(2):359–373

    Article  MathSciNet  Google Scholar 

  • Burman E, Elfverson D, Hansbo P, Larson MG, Larsson K (2018) Shape optimization using the cut finite element method. Comput Methods Appl Mech Engng 328:242–261

    Article  MathSciNet  Google Scholar 

  • Zhang WS, Chen JS, Zhu XF, Zhou JH, Xue DC, Lei X, Guo X (2017) Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput Methods Appl Mech Engng 332:590–614

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Oded Amir for constructive discussions and the valuable comments from anonymous reviewers on improving the quality of the present work.

Funding

The financial supports from the National Key Research and Development Plan (2016YFB0201600, 2016YFB0201601, 2017YFB0202800, 2017YFB0202802), the National Natural Science Foundation (11402048, 11472065, 11732004, 11772026, 11772076, 11502042, 11821202, 11872138), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT), and 111 Project (B14013) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zongliang Du or Xu Guo.

Additional information

Responsible Editor: Ole Sigmund

Appendix

Appendix

The process of generating TDF locally can be elaborated as follows:

  1. 1)

    Generating a rectangle \( {\Omega}_i^{\mathrm{ext}} \) (pink region), with the use of the parameters (oi, θi, li, ti), as shown in Fig. A1b. Here the symbol oi = (xi0, yi0) denotes the vector of the coordinates of the central point of the i-th component, θi is the corresponding inclined angle, while \( {l}_i=2{a}_i\sqrt[6]{\left(1+\epsilon \right)} \) and \( {t}_i=\max \left(2{t}_i^1,2{t}_i^2\right)\sqrt[6]{\left(1+\epsilon \right)} \) are the length and width of \( {\Omega}_i^{\mathrm{ext}} \), respectively. Note that \( {\Omega}_i^{\mathrm{ext}}\supset {\Omega}_i^{\prime }=\left\{\boldsymbol{x}|\boldsymbol{x}\in \mathrm{D},{\phi}_i\left(\boldsymbol{x}\right)\ge -\epsilon \right\} \) (yellow region in Fig. A1b);

  2. 2)

    From the vertexes (which can be found analytically) of \( {\Omega}_i^{\mathrm{ext}} \), generating another rectangle \( {\Omega}_i^{\mathrm{rec}} \) (light blue region in Fig. A1b);

  3. 3)

    Generating the TDF associated with \( {\Omega}_i^{\mathrm{rec}} \);

  4. 4)

    Finding the TDF values in \( {\Omega}_i^{\mathrm{rec}} \) such that −ϵ ≤ ϕi(x) ≤ ϵ, and only storing these values by sparse matrix for subsequent treatment.

The above treatment guarantees that only local values of ϕi(x) are evaluated in the corresponding manipulations, which reduce the computational effort substantially.

Fig. 28
figure 28

A schematical illustration of generating the TDF locally

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhu, Y., Sun, Z. et al. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Struct Multidisc Optim 58, 2455–2479 (2018). https://doi.org/10.1007/s00158-018-2114-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2114-0

Keywords

Navigation