Skip to main content
Log in

Design for structural flexibility using connected morphable components based topology optimization

  • Article
  • Published:
Science China Technological Sciences Aims and scope Submit manuscript

Abstract

In topology optimization of structures considering flexibility, degenerated optimal solutions, such as hinges, gray areas and disconnected structures may appear. In this paper, built upon the newly developed morphable component based topology optimization approach, a novel representation using connected morphable components (CMC) and a linkage scheme are proposed to prevent degenerating designs and to ensure structure integrity. A lower bound condition of the thickness of each component is also incorporated to completely remove the smallest components in an optimal configuration. Designs of flexible structures, such as compliant mechanism design, maximum compliance structure design, and design of low-frequency resonating micro devices are studied to validate the proposed methodology. Our work demonstrates that the new methodology can successfully prevent degeneration solutions and possesses other advantages, such as minimum member size control in topology optimization of flexible structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guo X, Cheng G D. Recent development in structural design and optimization. Acta Mechanica Sinica, 2010; 26: 807–823

    Article  MathSciNet  MATH  Google Scholar 

  2. Sigmund O, Maute K. Topology optimization approaches. Struct Multidiscip O, 2013; 48: 1031–1055

    Article  MathSciNet  Google Scholar 

  3. Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method. Comput Method Appl M, 1988; 71: 197–224

    Article  MathSciNet  MATH  Google Scholar 

  4. Bendsøe M P. Optimal shape design as a material distribution problem. Struct Optimiz, 1989; 1: 193–202

    Article  Google Scholar 

  5. Zhou M, Rozvany G. The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Method Appl M, 1991; 89: 309–336

    Article  Google Scholar 

  6. Rozvany G, Zhou M, Birker T. Generalized shape optimization without homogenization. Struct Optimiz, 1992; 4: 250–252

    Article  Google Scholar 

  7. Bendsøe M P, Sigmund O. Material interpolation schemes in topology optimization. Arch Appl Mech, 1999; 69: 635–654

    Article  MATH  Google Scholar 

  8. Bendsøe M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. 2nd ed. Berlin, Heidelberg: Springer, 2003

    MATH  Google Scholar 

  9. Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010; 327: 1603–1607

    Article  Google Scholar 

  10. Fan J A, Yeo W H, Su Y W, et al. Fractal design concepts for stretchable electronics. Nature Communications, 2014. 5

    Google Scholar 

  11. Suo Z. Mechanics of stretchable electronics and soft machines. MRS Bull, 2012; 37: 218–225

    Article  Google Scholar 

  12. Deng J D, Rorschach K, Baker E, et al. Topology optimization and fabrication of low frequency vibration energy harvesting microdevices. Smart Mater Struct, 2015, 24: 025005

    Article  Google Scholar 

  13. Pedersen N L. Maximization of eigenvalues using topology optimization. Struct Multidiscip O, 2000; 20: 2–11

    Article  Google Scholar 

  14. Du J B, Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidiscip O, 2007; 34: 91–110

    Article  MathSciNet  MATH  Google Scholar 

  15. Ma Z D, Kikuchi N, Hagiwara I. Structural topology and shape optimization for a frequency response problem. Comput Mech, 1993; 13: 157–174

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma Z D, Kikuchi N, Cheng H C. Topological design for vibrating structures. Comput Method Appl M, 1995; 121: 259–280

    Article  MathSciNet  MATH  Google Scholar 

  17. Min S, Kikuchi N, Park Y C, et al. Optimal topology design of structures under dynamic loads. Struct Optimiz, 1999; 17: 208–218

    Google Scholar 

  18. Tai K, Chee T H. Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. J Mech Design, 2000. 122: 560–566

    Article  Google Scholar 

  19. Tai K, Cui G Y, Ray T. Design synthesis of path generating compliant mechanisms by evolutionary optimization of topology and shape. J Mech Design, 2002; 124: 492–500

    Article  Google Scholar 

  20. Zhou S W, Li Q. Microstructural design of connective base cells for functionally graded materials. Mater Lett, 2008; 62: 4022–4024

    Article  Google Scholar 

  21. Friis K S, Sigmund O. Robust topology design of periodic grating surfaces. J Opt Soc Am B, 2012; 29: 2935–2943

    Article  Google Scholar 

  22. Andreasen C S, Andreassen E, Jensen J S, et al. On the realization of the bulk modulus bounds for two-phase viscoelastic composites. J Mech Phys Solids, 2014; 63: 228–241

    Article  MathSciNet  Google Scholar 

  23. Nishiwaki S, Saitou K, Min S, et al. Topological design considering flexibility under periodic loads. Struct Multidiscip O, 2000; 19: 4–16

    Article  Google Scholar 

  24. Tcherniak D. Topology optimization of resonating structures using SIMP method. Int J Numer Meth Eng, 2002; 54: 1605–1622

    Article  MATH  Google Scholar 

  25. Tsai T D, Cheng C C. Structural design for desired eigenfrequencies and mode shapes using topology optimization. Struct Multidiscip O, 2013; 47: 673–686

    Article  MathSciNet  MATH  Google Scholar 

  26. Tai K, Chee T. Design of structures and compliant mechanisms by evolutionary optimization of morphological representations of topology. J Mech Design, 2000; 122: 560–566

    Article  Google Scholar 

  27. Tai K, Prasad J. Target-matching test problem for multiobjective topology optimization using genetic algorithms. Struct Multidiscip O, 2007; 34: 333–345

    Article  Google Scholar 

  28. Nishiwaki S, Silva E, Saitou K, et al. Topology optimization of actuators using structural flexibility. In: Proceedings of 3rd WCSMO’99, Buffalo, 1999. 4–6

    Google Scholar 

  29. Zhou S W, Li Q. Design of graded two-phase microstructures for tailored elasticity gradients. J Mater Sci, 2008; 43: 5157–5167

    Article  Google Scholar 

  30. Chen S, Wang M Y, Liu A Q. Shape feature control in structural topology optimization. Comput Aided Design, 2008; 40: 951–962

    Article  MathSciNet  Google Scholar 

  31. Wang F, Lazarov B S, Sigmund O. On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip O, 2011; 43: 767–784

    Article  MATH  Google Scholar 

  32. Allaire G, Jouve F, Michailidis G. Thickness control in structural optimization via a level set method. 2014. https://hal.archivesouvertes. fr/hal-00985000.

    Google Scholar 

  33. Guo X, Zhang W, Zhong W. Explicit feature control in structural topology optimization via level set method. Comput Method Appl M, 2014; 272: 354–378

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang W, Zhong W, Guo X. An explicit length scale control approach in SIMP-based topology optimization. Comput Method Appl M, 2014; 282: 71–86

    Article  MathSciNet  Google Scholar 

  35. Guo X, Zhang W, Zhong W. Doing topology optimization explicitly and geometrically—A new moving morphable components based framework. J Appl Mech, 2014, 81: 081009

    Article  Google Scholar 

  36. Zhu J, Zhang W, Beckers P. Integrated layout design of multi-component system. Int J Numer Meth Eng, 2009; 78: 631–651

    Article  MATH  Google Scholar 

  37. Bell B, Norato J, Tortorelli D. A geometry projection method for continuum-based topology optimization of structures. In: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, 2012

    Google Scholar 

  38. Norato J, Bell B, Tortorelli D. A geometry projection method for continuum-based topology optimization with discrete elements. Comput Method Appl M, 2015; 293: 306–327

    Article  MathSciNet  Google Scholar 

  39. Wei P, Wang M Y, Xing X. A study on X-FEM in continuum structural optimization using a level set model. Comput Aided Design, 2010; 42: 708–719

    Article  Google Scholar 

  40. Kreissl S, Maute K. Levelset based fluid topology optimization using the extended finite element method. Struct Multidiscip O, 2012; 46: 311–326

    Article  MathSciNet  MATH  Google Scholar 

  41. Belytschko T, Liu W K, Moran B, et al. Nonlinear Finite Elements for Continua and Structures. New York: John Wiley & Sons, 2013

    MATH  Google Scholar 

  42. Svanberg K. The method of moving asymptotes—A new method for structural optimization. Int J Numer Meth Eng, 1987; 24: 359–373

    Article  MathSciNet  MATH  Google Scholar 

  43. Svanberg K. A globally convergent version of MMA without linesearch. In: Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, Goslar, Germany, 1995

    Google Scholar 

  44. Wen X. High order numerical methods to two dimensional delta function integrals in level set methods. J Comput Phys, 2009; 228: 4273–4290

    Article  MathSciNet  MATH  Google Scholar 

  45. Wen X. High order numerical methods to three dimensional delta function integrals in level set methods. SIAM J Sci Comput, 2010; 32: 1288–1309

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, J., Chen, W. Design for structural flexibility using connected morphable components based topology optimization. Sci. China Technol. Sci. 59, 839–851 (2016). https://doi.org/10.1007/s11431-016-6027-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11431-016-6027-0

Keywords

Navigation