Skip to main content
Log in

A new three-dimensional topology optimization method based on moving morphable components (MMCs)

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the present paper, a new method for solving three-dimensional topology optimization problem is proposed. This method is constructed under the so-called moving morphable components based solution framework. The novel aspect of the proposed method is that a set of structural components is introduced to describe the topology of a three-dimensional structure and the optimal structural topology is found by optimizing the layout of the components explicitly. The standard finite element method with ersatz material is adopted for structural response analysis and the shape sensitivity analysis only need to be carried out along the structural boundary. Compared to the existing methods, the description of structural topology is totally independent of the finite element/finite difference resolution in the proposed solution framework and therefore the number of design variables can be reduced substantially. Some widely investigated benchmark examples, in the three-dimensional topology optimization designs, are presented to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscipl Optim 47(47):493–505

    Article  MathSciNet  MATH  Google Scholar 

  2. Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  3. Allaire G, Dapogny C, Frey P (2014) Shape optimization with a level set based mesh evolution method. Comput Methods Appl Mech Eng 282:22–53

    Article  MathSciNet  Google Scholar 

  4. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendsøe MP, Sigmund O (2003) Topology optimization-theory, methods and application. Springer, New York

    MATH  Google Scholar 

  6. Bendsøe MP, Lund E, Olhoff N, Sigmund O (2005) Topology optimization- broadening the areas of application. Control Cybern 34(1):7–35

    MathSciNet  MATH  Google Scholar 

  7. Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413–1430

    Article  MATH  Google Scholar 

  8. de Berg M, Cheong O, van Kreveld M, Overmars M (2000) Computational geometry: algorithms and applications. Springer, New York

    Book  MATH  Google Scholar 

  9. Diaz A, Lipton R (1997) Optimal material layout for 3D elastic structures. Struct Optim 13(1):60–64

    Article  Google Scholar 

  10. Du JB, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading—part II: algorithm and examples for 3D problems. Struct Multidiscipl Optim 27(3):166–177

    Article  MATH  Google Scholar 

  11. Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  12. Fernandes P, Guedes JM, Rodrigues H (1999) Topology optimization of three- dimensional linear elastic structures with a constraint on “perimeter”. Comput Struct 73(6):583–594

    Article  MathSciNet  MATH  Google Scholar 

  13. Fleury C (2007) Structural optimization methods for large scale problems: status and limitations. In: ASME 2007 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 513–522

  14. Friedman A, Sutradhar A, Paulino GH, Miller MJ, Nguyen TH (2010) Topological optimization for designing patient-specific large craniofacial segmental bone replacements. Proc Natl Acad Sci 107(30):13222–13227

    Article  Google Scholar 

  15. Gao XJ, Ma HT (2015) A modified model for concurrent topology optimization of structures and materials. Acta Mech Sin 31(6):890–898

    Article  MathSciNet  MATH  Google Scholar 

  16. Guo X, Cheng GD (2010) Recent development in structural design and optimization. Acta Mech Sin 26(6):807–823

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo X, Zhang WS, Zhong WL (2014) Stress-related topology optimization of continuum structures involving multi-phase materials. Comput Methods Appl Mech Eng 268:632–655

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo X, Zhang WS, Zhong WL (2014) Doing topology optimization explicitly and geometrically–a new moving morphable components based framework. J Appl Mech 81(8):081009

    Article  Google Scholar 

  19. Guo X, Zhang WS, Zhang J, Yuan J (2016) Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput Methods Appl Mech Eng 310:711–748

    Article  MathSciNet  Google Scholar 

  20. Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscipl Optim 50(6):1175–1196

    Article  MathSciNet  Google Scholar 

  21. Luo J, Luo Z, Chen SK, Tong YL, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331

    Article  MATH  Google Scholar 

  22. Montani C, Scateni R, Scopigno R (1994) A modified look-up table for implicit disambiguation of marching cubes. Visual Comput 10(6):353–355

    Article  Google Scholar 

  23. Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscipl Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  24. Suzuki K, Kikuchi N (1992) Generalized layout optimization of three-dimensional shell structures. Geometric aspects of industrial design, SIAM, Philadelphia, pp 62–88

  25. Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  26. Villanueva CH, Maute K (2014) Density and level set-XFEM schemes for topology optimization of 3-D structures. Comput Mech 54(1):133–150

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang MY, Wang XM (2004) ‘Color’ level sets: a multiphase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193(6):469–496

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Design 127(5):941–956

    Article  Google Scholar 

  30. Wu J, Westermann R, Dick C (2014) Real-time haptic cutting of high resolution soft tissues. Stud Health Technol Inform 196:469–475

    Google Scholar 

  31. Xia Q, Shi TL (2016) Topology optimization of compliant mechanism and its support through a level set method. Comput Methods Appl Mech Eng 305:359–375

    Article  MathSciNet  Google Scholar 

  32. Xia Q, Shi TL (2016) Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method. Comput Methods Appl Mech Eng 311:56–70

    Article  MathSciNet  Google Scholar 

  33. Yi GL, Sui YK (2015) Different effects of economic and structural performance indexes on model construction of structural topology optimization. Acta Mech Sin 31(5):777–788

    Article  MathSciNet  MATH  Google Scholar 

  34. Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidiscipl Optim 53(1):1–18

    Article  MATH  Google Scholar 

  35. Zhang WS, Zhang J, Guo X (2016) Lagrangian description based topology optimization—a revival of shape optimization. J Appl Mech 83(4):041010

    Article  Google Scholar 

  36. Zhang WS, Yuan J, Zhang J, Guo X (2016) A 188 line code for a moving morphable components (MMC) based topology optimization method. Struct Multidiscipl Optim 53(6):1243–1260

    Article  Google Scholar 

  37. Zhang WS, Yang WY, Zhou JH, Li D, Guo X (2017) Structural topology optimization through explicit boundary evolution. J Appl Mech 84(1):011011

  38. Zhu YN, Sifakis E, Teran J, Brandt A (2010) An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Trans Graph 29(2):397–408

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Key Research and Development Plan (2016YFB0201600), National Natural Science Foundation (11372004, 11402048), the Fundamental Research Funds for the Central Universities (DUT15RC(3)057), Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) and 111 Project (B14013) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Guo.

Appendix: The terms in the expression of shape sensitivity

Appendix: The terms in the expression of shape sensitivity

The terms in the expression of Eqs. (11)–(13) can be calculated as follows:

$$\begin{aligned} A^{i}= & {} - \frac{{p\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{1}^{i} } \right) ^{p} }}\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial x_{0}^{i} }} - \frac{{p\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{2}^{i} } \right) ^{p} }}\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial x_{0}^{i} }}\nonumber \\&-\, \frac{{p\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{3}^{i} } \right) ^{p} }}\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial x_{0}^{i} }}, \end{aligned}$$
(15)
$$\begin{aligned} B^{i}= & {} - \frac{{p\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{1}^{i} } \right) ^{p} }}\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial y_{0}^{i} }} - \frac{{p\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{2}^{i} } \right) ^{p} }}\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial y_{0}^{i} }}\nonumber \\&-\, \frac{{p\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{3}^{i} } \right) ^{p} }}\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial y_{0}^{i} }}, \end{aligned}$$
(16)
$$\begin{aligned} C^{i}= & {} - \frac{{p\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{1}^{i} } \right) ^{p} }}\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial z_{0}^{i} }} - \frac{{p\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{2}^{i} } \right) ^{p} }}\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial z_{0}^{i} }}\nonumber \\&-\, \frac{{p\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{3}^{i} } \right) ^{p} }}\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial z_{0}^{i} }}, \end{aligned}$$
(17)
$$\begin{aligned} D^{i}= & {} p\frac{{\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{p} }}{{(L_{1}^{i} )^{{p + 1}} }}, \end{aligned}$$
(18)
$$\begin{aligned} E^{i}= & {} p\frac{{\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{p} }}{{(L_{2}^{i} )^{{p + 1}} }}, \end{aligned}$$
(19)
$$\begin{aligned} F^{i}= & {} p\frac{{\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{p} }}{{(L_{3}^{i} )^{{p + 1}}}}, \end{aligned}$$
(20)
$$\begin{aligned} G^{i}= & {} - \frac{{p\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{1}^{i} } \right) ^{p} }}\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial s_{a}^{i} }} - \frac{{p\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{2}^{i} } \right) ^{p} }}\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial s_{a}^{i} }}\nonumber \\&-\, \frac{{p\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{3}^{i} } \right) ^{p} }}\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial s_{a}^{i} }}, \end{aligned}$$
(21)
$$\begin{aligned} H^{i}= & {} - \frac{{p\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{1}^{i} } \right) ^{p} }}\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial s_{b}^{i} }} - \frac{{p\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{2}^{i} } \right) ^{p} }}\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial s_{b}^{i} }}\nonumber \\&-\, \frac{{p\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{3}^{i} } \right) ^{p} }}\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial s_{b}^{i} }}, \end{aligned}$$
(22)
$$\begin{aligned} I^{i}= & {} - \frac{{p\left( {\left( {x^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{1}^{i} } \right) ^{p} }}\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial s_{t}^{i} }} - \frac{{p\left( {\left( {y^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{2}^{i} } \right) ^{p} }}\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial s_{t}^{i} }}\nonumber \\&-\, \frac{{p\left( {\left( {z^{\prime }} \right) ^{i} } \right) ^{{p - 1}} }}{{\left( {L_{3}^{i} } \right) ^{p} }}\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial s_{t}^{i} }}, \end{aligned}$$
(23)

where the derivates of \(x',y'\) and \(z'\) with respective to the design variables can be calculated as

$$\begin{aligned} \frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial x_{0}^{i} }}= & {} - R_{{11}}^{i} ,~~\frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial y_{0}^{i} }} = - R_{{12}}^{i} ,~~\frac{{~\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial z_{0}^{i} }} = - R_{{13}}^{i} , \end{aligned}$$
(24)
$$\begin{aligned} \frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial s_{a}^{i} }}= & {} 0, \end{aligned}$$
(25)
$$\begin{aligned} \frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial s_{b}^{i} }}= & {} - \frac{{s_{b}^{i} }}{{c_{b}^{i} }}c_{t} \left( {x - x_{0}^{i} } \right) - \frac{{s_{b}^{i} }}{{c_{b}^{i} }}s_{t}^{i} \left( {y - y_{0}^{i} } \right) + \left( {z - z_{0}^{i} } \right) , \end{aligned}$$
(26)
$$\begin{aligned} \frac{{\partial \left( {x^{\prime }} \right) ^{i} }}{{\partial s_{t}^{i} }}= & {} - c_{b}^{i} \frac{{s_{t}^{i} }}{{c_{t}^{i} }}\left( {x - x_{0}^{i} } \right) - c_{b}^{i} \left( {y - y_{0}^{i} } \right) , \end{aligned}$$
(27)
$$\begin{aligned} \frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial x_{0}^{i} }}= & {} - R_{{21}}^{i} ,~~\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial y_{0}^{i} }} = - R_{{22}}^{i} ,~~\frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial z_{0}^{i} }} = - R_{{23}}^{i} , \end{aligned}$$
(28)
$$\begin{aligned} \frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial s_{a}^{i} }}= & {} \left( {s_{b}^{i} c_{t}^{i} - \frac{{s_{a}^{i} }}{{c_{a}^{i} }}s_{t}^{i} } \right) \left( {x - x_{0}^{i} } \right) \nonumber \\&+\, \left( { - s_{b}^{i} s_{t}^{i} - \frac{{s_{a}^{i} }}{{c_{a}^{i} }}c_{t}^{i} } \right) \left( {y - y_{0}^{i} } \right) - c_{b}^{i} \left( {z - z_{0}^{i} } \right) , \end{aligned}$$
(29)
$$\begin{aligned} \frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial s_{b}^{i} }}= & {} s_{a}^{i} c_{t}^{i} \left( {x - x_{0}^{i} } \right) - s_{a}^{i} s_{t}^{i} \left( {y - y_{0}^{i} } \right) + s_{a}^{i} \frac{{s_{b}^{i} }}{{c_{b}^{i} }}\left( {z - z_{0}^{i} } \right) , \end{aligned}$$
(30)
$$\begin{aligned} \frac{{\partial \left( {y^{\prime }} \right) ^{i} }}{{\partial s_{t}^{i} }}= & {} \left( { - s_{a}^{i} s_{b}^{i} \frac{{s_{t}^{i} }}{{c_{t}^{i} }} + c_{a}^{i} } \right) \left( {x - x_{0}^{i} } \right) \nonumber \\&+\, \left( { - s_{a}^{i} s_{b}^{i} - c_{a}^{i} \frac{{s_{t}^{i} }}{{c_{t}^{i} }}} \right) \left( {y - y_{0}^{i} }\right) \end{aligned}$$
(31)

and

$$\begin{aligned} \frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial x_{0}^{i} }}= & {} - R_{{31}}^{i} ,~~\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial y_{0}^{i} }} = - R_{{32}}^{i} ,~~\frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial z_{0}^{i} }} = - R_{{33}}^{i} , \end{aligned}$$
(32)
$$\begin{aligned} \frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial s_{a}^{i} }}= & {} \left( {\frac{{s_{a}^{i} }}{{c_{a}^{i} }}s_{b}^{i} c_{t}^{i} + s_{t}^{i} } \right) \left( {x - x_{0}^{i} } \right) + \left( { - \frac{{s_{a}^{i} }}{{c_{a}^{i} }}s_{b}^{i} s_{t}^{i} + c_{t}^{i} } \right) \nonumber \\&\times \left( {y - y_{0}^{i} } \right) ~ - \frac{{s_{a}^{i} }}{{c_{a}^{i} }}c_{b}^{i} \left( {z - z_{0}^{i} } \right) , \end{aligned}$$
(33)
$$\begin{aligned} \frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial s_{b}^{i} }}= & {} - c_{a}^{i} c_{t}^{i} \left( {x - x_{0}^{i} } \right) + c_{a}^{i} s_{t}^{i} \left( {y - y_{0}^{i} } \right) ~~ - c_{a}^{i} \frac{{s_{b}^{i} }}{{c_{b}^{i} }}\left( {z - z_{0}^{i} } \right) ,\nonumber \\ \end{aligned}$$
(34)
$$\begin{aligned} \frac{{\partial \left( {z^{\prime }} \right) ^{i} }}{{\partial s_{t}^{i} }}= & {} \left( {c_{a}^{i} s_{b}^{i} \frac{{s_{t}^{i} }}{{c_{t}^{i} }} + s_{a}^{i} } \right) \left( {x - x_{0}^{i} } \right) + \left( {c_{a}^{i} s_{b}^{i} - s_{a}^{i} \frac{{s_{t}^{i} }}{{c_{t}^{i} }}} \right) \left( {y - y_{0}^{i} } \right) .\nonumber \\ \end{aligned}$$
(35)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Li, D., Yuan, J. et al. A new three-dimensional topology optimization method based on moving morphable components (MMCs). Comput Mech 59, 647–665 (2017). https://doi.org/10.1007/s00466-016-1365-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-016-1365-0

Keywords

Navigation