Skip to main content
Log in

Acetabular defect classification in times of 3D imaging and patient-specific treatment protocols

Periazetabuläre Defektklassifikation in Zeiten von 3D-Bildgebung und patientenspezifischer Therapieprotokolle

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Abstract

Parallel to the rising number of revision hip procedures, an increasing number of complex periprosthetic osseous defects can be expected. Stable long-term fixation of the revision implant remains the ultimate goal of the surgical protocol. Within this context, an elaborate preoperative planning process including anticipation of the periacetabular defect form and size and analysis of the remaining supporting osseous elements are essential. However, detection and evaluation of periacetabular bone defects using an unsystematic analysis of plain anteroposterior radiographs of the pelvis is in many cases difficult. Therefore, periacetabular bone defect classification schemes such as the Paprosky system have been introduced that use standardized radiographic criteria to better anticipate the intraoperative reality. Recent studies were able to demonstrate that larger defects are often underestimated when using the Paprosky classification and that the intra- and interobserver reliability of the system is low. This makes it hard to compare results in terms of defects being studied. Novel software tools that are based on the analysis of CT data may provide an opportunity to overcome the limitations of native radiographic defect analysis. In the following article we discuss potential benefits of these novel instruments against the background of the obvious limitations of the currently used native radiographic defect analysis.

Zusammenfassung

Parallel zur steigenden Anzahl der Revisionseingriffe am Hüftgelenk steigt auch die Anzahl der Patienten, die große periazetabuläre Knochendefekte aufweisen. Die adäquate chirurgische Versorgung solch komplexer Fälle mit einer stabilen und langfristigen Fixation des Revisionsimplantats bleibt oberstes Ziel. Hierzu ist eine präoperative Planung mit Abschätzung der Defektform und -größe sowie des verbleibenden autochthonen Knochenlagers essenziell. Die Detektion und Evaluation pfannenseitiger periprothetischer Knochendefekte durch unsystematische Beurteilung von konventionellen Beckenübersichtsaufnahmen ist jedoch in vielen Fällen nur unzureichend möglich. Zur vereinfachten präoperativen Planung wurden deshalb Klassifikationen wie die von Paprosky eingeführt, die standardisierte radiologische Evaluationskriterien anwenden, um den intraoperativ zu erwartenden Knochendefekt leichter einzuschätzen. Aktuelle Forschungsarbeiten konnten jedoch zeigen, dass diese Klassifikationssysteme die Größe der Defekte häufig unterschätzen und eine niedrige Intra- und Interobserverreliabilität aufweisen. Somit sind Ergebnisse unterschiedlicher Studien nur bedingt miteinander vergleichbar. Neuartige Software-Applikationen basierend auf der Analyse computertomographisch generierter Daten bieten Lösungsansätze für die Probleme, die mit der nativ-radiologischen Defektanalyse verbunden sind. Im folgenden Artikel wird der potenzielle Nutzen dieser neuartigen diagnostischen Instrumente vor dem Hintergrund der offensichtlichen Limitationen der bisher etablierten nativ-radiologischen Defektanalyse diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kurtz S, Ong K, Lau E, Mowat F, Halpern M (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785

    PubMed  Google Scholar 

  2. Kurtz SM, Ong KL, Schmier J, Zhao K, Mowat F, Lau E (2009) Primary and revision arthroplasty surgery caseloads in the United States from 1990 to 2004. J Arthroplasty 24(2):195–203

    Article  PubMed  Google Scholar 

  3. Patel A, Pavlou G, Mujica-Mota RE, Toms AD (2015) The epidemiology of revision total knee and hip arthroplasty in England and Wales: a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. Bone Joint J 97–B(8):1076–1081

    Article  PubMed  Google Scholar 

  4. Bashinskaya B, Zimmerman RM, Walcott BP, Antoci V (2012) Arthroplasty utilization in the United States is predicted by age-specific population groups. ISRN Orthop. doi:10.5402/2012/185938

    PubMed  PubMed Central  Google Scholar 

  5. Abu-Amer Y, Darwech I, Clohisy JC (2007) Aseptic loosening of total joint replacements: mechanisms underlying osteolysis and potential therapies. Arthritis Res Ther 9(Suppl 1):S6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gollwitzer H, von Eisenhart-Rothe R, Holzapfel BM, Gradinger R (2010) Revision arthroplasty of the hip: acetabular component. Chirurg 81(4):284–292

    Article  CAS  PubMed  Google Scholar 

  7. Rudert M, Holzapfel BM, Kratzer F, Gradinger R (2010) Standardized reconstruction of acetabular bone defects using the cranial socket system. Oper Orthop Traumatol 22(3):241–255

    Article  PubMed  Google Scholar 

  8. von Eisenhart-Rothe R, Gollwitzer H, Toepfer A, Pilge H, Holzapfel BM, Rechl H, Gradinger R (2010) Mega cups and partial pelvic replacement. Orthopäde 39(10):931–941

    Article  Google Scholar 

  9. Rudert M, Hoberg M, Prodinger PM, Gradinger R, Holzapfel BM (2010) Replacement of femoral hip prostheses. Chirurg 81(4):299–309

    Article  CAS  PubMed  Google Scholar 

  10. Walde TA, Mohan V, Leung S, Engh CA Sr. (2005) Sensitivity and specificity of plain radiographs for detection of medial-wall perforation secondary to osteolysis. J Arthroplasty 20(1):20–24

    Article  PubMed  Google Scholar 

  11. Claus AM, Engh CA Jr., Sychterz CJ, Xenos JS, Orishimo KF, Engh CA Sr. (2003) Radiographic definition of pelvic osteolysis following total hip arthroplasty. J Bone Joint Surg Am 85–A(8):1519–1526

    Article  PubMed  Google Scholar 

  12. Zimlich RH, Fehring TK (2000) Underestimation of pelvic osteolysis: the value of the iliac oblique radiograph. J Arthroplasty 15(6):796–801

    Article  CAS  PubMed  Google Scholar 

  13. Thomas A, Epstein NJ, Stevens K, Goodman SB (2007) Utility of judet oblique x‑rays in preoperative assessment of acetabular periprosthetic osteolysis: a preliminary study. Am J Orthop 36(7):E107–E110

    PubMed  Google Scholar 

  14. Jerosch J, Steinbeck J, Fuchs S, Kirchhoff C (1996) Radiologic evaluation of acetabular defects on acetabular loosening of hip alloarthroplasty. Unfallchirurg 99(10):727–733

    Article  CAS  PubMed  Google Scholar 

  15. Safir O, Lin C, Kosashvili Y, Mayne IP, Gross AE, Backstein D (2012) Limitations of conventional radiographs in the assessment of acetabular defects following total hip arthroplasty. Can J Surg 55(6):401–407

    Article  PubMed  PubMed Central  Google Scholar 

  16. Engh CA Jr., Sychterz CJ, Young AM, Pollock DC, Toomey SD, Engh CA Sr. (2002) Interobserver and intraobserver variability in radiographic assessment of osteolysis. J Arthroplasty 17(6):752–759

    Article  PubMed  Google Scholar 

  17. Stamenkov R, Howie D, Taylor J, Findlay D, McGee M, Kourlis G, Carbone A, Burwell M (2003) Measurement of bone defects adjacent to acetabular components of hip replacement. Clin Orthop Relat Res 412:117–124

    Article  Google Scholar 

  18. Leung S, Naudie D, Kitamura N, Walde T, Engh CA (2005) Computed tomography in the assessment of periacetabular osteolysis. J Bone Joint Surg Am 87(3):592–597

    Article  PubMed  Google Scholar 

  19. Walde TA, Weiland DE, Leung SB, Kitamura N, Sychterz CJ, Engh CA Jr., Claus AM, Potter HG, Engh CA Sr. (2005) Comparison of CT, MRI, and radiographs in assessing pelvic osteolysis: a cadaveric study. Clin Orthop Relat Res 437:138–144

    Article  Google Scholar 

  20. Kitamura N, Pappedemos PC, Duffy PR 3rd, Stepniewski AS, Hopper RH Jr., Engh CA Jr., Engh CA (2006) The value of anteroposterior pelvic radiographs for evaluating pelvic osteolysis. Clin Orthop Relat Res 453:239–245

    Article  PubMed  Google Scholar 

  21. Garcia-Cimbrelo E, Tapia M, Martin-Hervas C (2007) Multislice computed tomography for evaluating acetabular defects in revision THA. Clin Orthop Relat Res 463:138–143

    PubMed  Google Scholar 

  22. Egawa H, Powers CC, Beykirch SE, Hopper RH Jr., Engh CA Jr., Engh CA (2009) Can the volume of pelvic osteolysis be calculated without using computed tomography? Clin Orthop Relat Res 467(1):181–187

    Article  PubMed  Google Scholar 

  23. Shon WY, Gupta S, Biswal S, Han SH, Hong SJ, Moon JG (2009) Pelvic osteolysis relationship to radiographs and polyethylene wear. J Arthroplasty 24(5):743–750

    Article  PubMed  Google Scholar 

  24. Wenz JF, Hauser DL, Scott WW, Robertson DD, Tsapakos MJ, Kearney DK, Bluemke DA, Naiman DO, Brooker AF, Chao EY (1997) Observer variation in the detection of acetabular bone deficiencies. Skeletal Radiol 26(5):272–278

    Article  CAS  PubMed  Google Scholar 

  25. D’Antonio JA, Capello WN, Borden LS, Bargar WL, Bierbaum BF, Boettcher WG, Steinberg ME, Stulberg SD, Wedge JH (1989) Classification and management of acetabular abnormalities in total hip arthroplasty. Clin Orthop Relat Res 243:126–137

    Google Scholar 

  26. Chandler HP, Penenberg BL (1989) Femoral reconstruction. In: Chandler HP, Penenberg BL (eds) Bone stock deficiency in total hip replacement: Classification and management, vol 1. Slack, Thorofare, pp 19–164

    Google Scholar 

  27. Engh CA, Glassmen AH (1990) Cementless revision of failed total hip replacement. Orthop Rev 14(Suppl):23–28

    Google Scholar 

  28. Gross AE, Allan DG, Catre M, Garbuz DS, Stockley I (1993) Bone grafts in hip replacement surgery. The pelvic side. Orthop Clin North Am 24(4):679–695

    CAS  PubMed  Google Scholar 

  29. Paprosky WG, Perona PG, Lawrence JM (1994) Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty 9(1):33–44

    Article  CAS  PubMed  Google Scholar 

  30. Nieder E (1994) Revisionsalloarthroplastik des Hüftgelenks. In: Bauer R, Kerschbaumer F, Poisel S (eds) Becken und untere Extremität. Orthopädische Operationslehre, vol 2 part 1. Thieme, Stuttgart, pp 324–356

    Google Scholar 

  31. Gustilo RB, Pasternak HS (1988) Revision total hip arthroplasty with titanium ingrowth prosthesis and bone grafting for failed cemented femoral component loosening. Clin Orthop Relat Res 235:111–119

    Google Scholar 

  32. Bettin D, Katthagen BD (1997) The German Society of Orthopedics and Traumatology classification of bone defects in total hip endoprostheses revision operations. Z Orthop Ihre Grenzgeb 135(4):281–284

    Article  CAS  PubMed  Google Scholar 

  33. Saleh KJ, Holtzman J, Gafni AL, Jaroszynski G, Wong P, Woodgate I, Davis A, Gross AE (2001) Development, test reliability and validation of a classification for revision hip arthroplasty. J Orthop Res 19(1):50–56

    Article  CAS  PubMed  Google Scholar 

  34. Johanson NA, Driftmier KR, Cerynik DL, Stehman CC (2010) Grading acetabular defects: the need for a universal and valid system. J Arthroplasty 25(3):425–431

    Article  PubMed  Google Scholar 

  35. Telleria JJ, Gee AO (2013) Classifications in brief: Paprosky classification of acetabular bone loss. Clin Orthop Relat Res 471(11):3725–3730

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yu R, Hofstaetter JG, Sullivan T, Costi K, Howie DW, Solomon LB (2013) Validity and reliability of the Paprosky acetabular defect classification. Clin Orthop Relat Res 471(7):2259–2265

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gozzard C, Blom A, Taylor A, Smith E, Learmonth I (2003) A comparison of the reliability and validity of bone stock loss classification systems used for revision hip surgery. J Arthroplasty 18(5):638–642

    Article  PubMed  Google Scholar 

  38. Käfer W, Fraitzl CR, Kinkel S, Puhl W, Kessler S (2004) Analysis of validity and reliability of three radiographic classification systems for preoperative assessment of bone stock loss in revision total hip arthroplasty. Z Orthop Ihre Grenzgeb 142(1):33–39

    Article  PubMed  Google Scholar 

  39. Paprosky WG, Cross MB (2013) CORR Insights(R): validity and reliability of the Paprosky acetabular defect classification. Clin Orthop Relat Res 471(7):2266

    Article  PubMed  PubMed Central  Google Scholar 

  40. Campbell DG, Garbuz DS, Masri BA, Duncan CP (2001) Reliability of acetabular bone defect classification systems in revision total hip arthroplasty. J Arthroplasty 16(1):83–86

    Article  CAS  PubMed  Google Scholar 

  41. Parry MC, Whitehouse MR, Mehendale SA, Smith LK, Webb JC, Spencer RF, Blom AW (2010) A comparison of the validity and reliability of established bone stock loss classification systems and the proposal of a novel classification system. Hip Int 20(1):50–55

    PubMed  Google Scholar 

  42. Gupta A, Subhas N, Primak AN, Nittka M, Liu K (2015) Metal artifact reduction: standard and advanced magnetic resonance and computed tomography techniques. Radiol Clin North Am 53(3):531–547

    Article  PubMed  Google Scholar 

  43. Gelaude F, Clijmans T, Delport H (2011) Quantitative computerized assessment of the degree of acetabular bone deficiency: Total radial Acetabular Bone Loss (TrABL). Adv Orthop 2011:494382

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Holzapfel MD, PhD, FEBOT.

Ethics declarations

Conflict of interest

K. Horas, J. Arnholdt, A.F. Steinert, M. Hoberg, M. Rudert and B. M. Holzapfel declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horas, K., Arnholdt, J., Steinert, A. et al. Acetabular defect classification in times of 3D imaging and patient-specific treatment protocols. Orthopäde 46, 168–178 (2017). https://doi.org/10.1007/s00132-016-3378-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-016-3378-y

Keywords

Schlüsselwörter

Navigation