Skip to main content
Log in

Fine mapping of powdery mildew resistance gene MlWE74 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides) in an NBS-LRR gene cluster

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Powdery mildew resistance gene MlWE74, originated from wild emmer wheat accession G-748-M, was mapped in an NBS-LRR gene cluster of chromosome 2BS.

Abstract

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a globally devastating disease. Wild emmer wheat (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene was transferred to hexaploid wheat line WE74 from wild emmer accession G-748-M. Genetic analysis revealed that the powdery mildew resistance in WE74 is controlled by a single dominant gene, herein temporarily designated MlWE74. Bulked segregant analysis (BSA) and molecular mapping delimited MlWE74 to the terminal region of chromosome 2BS flanking by markers WGGBD412 and WGGBH346 within a genetic interval of 0.25 cM and corresponding to 799.9 kb genomic region in the Zavitan reference sequence. Sequence annotation revealed two phosphoglycerate mutase-like genes, an alpha/beta-hydrolases gene, and five NBS-LRR disease resistance genes that could serve as candidates for map-based cloning of MlWE74. The geographical location analysis indicated that MlWE74 is mainly distributed in Rosh Pinna and Amirim regions, in the northern part of Israel, where environmental conditions are favorable to the occurrence of powdery mildew. Moreover, the co-segregated marker WGGBD425 is helpful in marker-assisted transfer of MlWE74 into elite cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, Pozniak CJ, Choulet F, Distelfeld A, Poland J et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:661–673

    CAS  Google Scholar 

  • Ben-David R, Xie W, Peleg Z, Saranga Y, Dinoor A, Fahima T (2010) Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor Appl Genet 121:499–510

    Article  CAS  PubMed  Google Scholar 

  • Blanco A, Gadaleta A, Cenci A, Carluccio AV, Abdelbacki AMM, Simeone R (2008) Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor Appl Genet 117:135–142

    Article  CAS  PubMed  Google Scholar 

  • Chen XM, Luo YH, Xia X, Xia LQ, Chen X, Ren ZL, He Z, Jia J (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Cowger C, Mehra LK, Arellano C, Meyers E, Murph JP (2018) Virulence differences in Blumeria graminis f. sp. tritici from the central and eastern United States. Phytopathology 108:402–411

    Article  CAS  PubMed  Google Scholar 

  • Devi KD, Punyarani K, Singh NS, Devi HS (2013) An efficient protocol for total DNA extraction from the members of order Zingiberales-suitable for diverse PCR based downstream applications. Springerplus 2:669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geng M, Zhang J, Peng F, Liu X, Lv X, Mi Y, Li Y, Li F, Xie C, Sun Q (2016) Identification and mapping of MlIW30, a novel powdery mildew resistance gene derived from wild emmer wheat. Mol Breed 36:130

    Article  CAS  Google Scholar 

  • He H, Zhu S, Zhao R, Jiang Z, Ji Y, Ji J, Qiu D, Li H, Bie T (2018) Pm21, encoding a typical CC-NBS-LRR protein, confers broad spectrum resistance to wheat powdery mildew disease. Mol Plant 11:879–882

    Article  CAS  PubMed  Google Scholar 

  • He H, Liu R, Ma P, Du H, Zhang H, Wu Q, Yang L, Gong S, Liu T, Huo N et al (2020) Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796. Theor Appl Genet 134:53–62

    Article  PubMed  CAS  Google Scholar 

  • Hewitt T, Muller MC, Molnar I, Mascher M, Holusova K, Simkova H, Kunz L, Zhang J, Li J, Bhatt D et al (2020) A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis. New Phytol 229:2812–2826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Duan X, Sun Q, Liu Z (2009) Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:223–230

    Article  CAS  PubMed  Google Scholar 

  • Hurni S, Brunner S, Buchmann G, Herren G, Jordan T, Krukowski P, Wicker T, Yahiaoui N, Mago R, Keller B (2013) Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew. Plant J 76:957–969

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Xie C, Ni Z, Yang T, Nevo E, Fahima T, Liu Z, Sun Q (2008) Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390

    Article  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly K (1987) MAPMAKER: an interactive computer package for constructive primary genetic linkage maps of experimental and natural populations. Genomics 16:224–230

    Google Scholar 

  • Li G, Fang T, Zhang H, Xie C, Li H, Yang T, Nevo E, Fahima T, Sun Q, Liu Z (2009) Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet 119:531–539

    Article  CAS  PubMed  Google Scholar 

  • Li M, Dong L, Li B, Wang Z, Xie J, Qiu D, Li Y, Shi W, Yang L, Wu Q et al (2020) A CNL protein in wild emmer wheat confers powdery mildew resistance. New Phytol 228:1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhang D, Ouyang S, Xie J, Wu Q, Wang Z, Cui Y, Lu P, Zhang D, Liu Z et al (2015) Dynamic evolution of resistance gene analogs in the orthologous genomic regions of powdery mildew resistance gene MlIW170 in Triticum dicoccoides and Aegilops tauschii. Theor Appl Genet 128:1617–1629

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Meng J (2003) MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas 25:317–321

    PubMed  Google Scholar 

  • Liu Z, Sun Q, Ni Z, Yang T (1999) Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat. Plant Breed 118:215–219

    Article  CAS  Google Scholar 

  • Liu Z, Sun Q, Ni Z, Nevo E, Yang T (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Lu P, Guo L, Wang Z, Li B, Li J, Li Y, Qiu D, Shi W, Yang L, Wang N et al (2020) A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 11:680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P, Xu H, Han G, Luo Q, Xu Y, Zhang X, An D, Li L, Sun Y (2016) Characterization of a segregation distortion locus with powdery mildew resistance in a wheat-Thinopyrum intermedium introgression line WE99. Plant Dis 100:1541–1547

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG et al (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51:885–895

    Article  CAS  PubMed  Google Scholar 

  • Maxwell JJ, Lyerly JH, Srnic G, Parks R, Cowger C, Marshall D, Brown-Guedira G, Murphy JP (2010) MlAB10: a Triticum turgidum subsp. dicoccoides derived powdery mildew resistance gene identified in common wheat. Crop Sci 50:2261–2267

    Article  CAS  Google Scholar 

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Aylife M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Moseman JG, Nevo E, El-Morshidy MA, Zohary D (1984) Resistance of Triticum dicoccoides collected in Isreal to infection with Erysiphe gramminis tritici. Euphytica 33:41–47

    Article  Google Scholar 

  • Nevo E (2014) Evolution of wild emmer wheat and crop improvement. J Syst Evol 52:673–696

    Article  Google Scholar 

  • Nevo E, Gerechter-Amitai ZK, Beiles A (1991) Resistance of wild emmer wheat to stem rust: ecological, pathological and allozyme associations. Euphytica 53:121–130

    Article  CAS  Google Scholar 

  • Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z et al (2014) Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS ONE 9:e100160

  • Parks R, Carbone I, Murph JP, Marshall D, Cowger C (2008) Virulence structure of the eastern US wheat powdery mildew population. Plant Dis 92:1074–1082

    Article  PubMed  Google Scholar 

  • Piarulli L, Gadaleta A, Mangini G, Signorile MA, Pasquini M, Blanco A, Simeone R (2012) Molecular identification of a new powdery mildew resistance gene on chromosome 2BS from Triticum turgidum ssp. dicoccum. Plant Sci 196:101–106

    Article  CAS  PubMed  Google Scholar 

  • Qiu L, Liu N, Wang H, Shi X, Li F, Zhang Q, Wang W, Guo W, Hu Z, Li H et al (2021) Fine mapping of a powdery mildew resistance gene MlIW39 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides). Theor Appl Genet 134:2469–2479

    Article  CAS  PubMed  Google Scholar 

  • Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60

    Article  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T et al (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17:1–7

    Article  CAS  Google Scholar 

  • Sánchez-Martín J, Keller B (2021) NLR immune receptors and diverse types of non-NLR proteins control race-specific resistance in Triticeae. Curr Opin Plant Biol 62:102053

  • Sato K, Abe F, Mascher M, Haberer G, Gundlach H, Spannagl M, Shirasawa K, Isobe S (2021) Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder.’ DNA Res 28:1–7

    Article  CAS  Google Scholar 

  • Shen XK, Ma LX, Zhong SF, Liu N, Zhang M, Chen WQ, Zhou YL, Li HJ, Chang ZJ, Li X et al (2015) Identification and genetic mapping of the putative Thinopyrum intermedium-derived dominant powdery mildew resistance gene PmL962 on wheat chromosome arm 2BS. Theor Appl Genet 128:517–528

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He XY et al (2016) Disease impact on wheat yield potential and prospects of genetic control. Aannu Rev Phytopathol 54:303–322

    Article  CAS  Google Scholar 

  • Singh SP, Hurni S, Ruinelli M, Brunner S, Sanchez-Martin J, Krukowski P, Peditto D, Buchmann G, Zbinden H, Keller B (2018) Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity. Plant Mol Biol 98:249–260

    Article  CAS  PubMed  Google Scholar 

  • Walkowiak S, Gao L, Monat C, Haberer G, Kassa MT, Brinton J, Ramirez-Gonzalez RH, Kolodziej MC, Delorean E, Thambugala D et al (2020) Multiple wheat genomes reveal global variation in modern breeding. Nature 588:277–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Distelfeld A, Röder MS, Dinoor A, Fahima T (2012) Identification and characterization of a novel powdery mildew resistance gene PmG3M derived from wild emmer wheat, Triticum dicoccoides. Theor Appl Genet 124:911–922

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P et al (2020) A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. New Phytol 228:1011–1026

    Article  CAS  PubMed  Google Scholar 

  • Xing L, Hu P, Liu J, Witek K, Zhou S, Xu J, Zhou W, Gao L, Huang Z, Zhang R et al (2018) Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat. Mol Plant 11:874–887

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Fang X, Li P, Yang Y, Hao Y, Liang X, Bo C, Ni F, Ma X, Du X et al (2021) Genetic mapping of a novel powdery mildew resistance gene in wild emmer wheat from “Evolution Canyon” in Mt. Carmel Israel Theor Appl Genet 134:909–921

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Guan H, Li J, Zhu J, Xie C, Zhou Y, Duan X, Yang T, Sun Q, Liu Z (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

  • Zhang D, Zhu K, Dong L, Liang Y, Li G, Fang T, Guo G, Wu Q, Xie J, Chen Y et al (2019) Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var. dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5. Crop J 7:761–770

    Article  Google Scholar 

  • Zhu TT, Wang L, Rodriguez JC, Deal KR, Avni R, Distelfeld A, Mcguire PE, Dovorak J, Luo MC (2019) Improved genome sequence of wild emmer wheat Zavitan with the aid of optical maps. G3-Genes Genom Genet 9:619–624

  • Zou S, Wang H, Li Y, Kong Z, Tang D (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 218:298–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Tsomin Yang and Qixin Sun for providing the wheat line WE74. This work was financially supported by the National Natural Science Foundation of China (32101735).

Funding

Young Scientists Fund, 32101735, Miaomiao Li.

Author information

Authors and Affiliations

Authors

Contributions

WH, ZYL and MML designed the experiments. KYZ, MML, HBW, DYZ, LLD, QHW, YXC, JZX, PL, GHG, HZZ, PPZ, BBL, WLL, LD, QFW, JHZ, WLH, LQG, RGW, and CGY performed the experiments, conducted fieldwork, analyzed data, and performed Bgt inoculation. KYZ, MML, WH, HJL and ZYL wrote the paper. All authors read, revised, and approved the manuscript.

Corresponding authors

Correspondence to Miaomiao Li, Zhiyong Liu or Wei Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Urmil Bansal.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 1150 kb)

Supplementary file2 (XLSX 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Li, M., Wu, H. et al. Fine mapping of powdery mildew resistance gene MlWE74 derived from wild emmer wheat (Triticum turgidum ssp. dicoccoides) in an NBS-LRR gene cluster. Theor Appl Genet 135, 1235–1245 (2022). https://doi.org/10.1007/s00122-021-04027-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-04027-2

Navigation