Skip to main content
Log in

SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

bHLH family proteins play an important role in plant stress response. However, the molecular mechanism regulating the salt response of bHLH is largely unknown. This study aimed to investigate the function and regulating mechanism of the sweet sorghum SbbHLH85 during salt stress. The results showed that SbbHLH85 was different from its homologs in other species. Also, it was a new atypical bHLH transcription factor and a key gene for root development in sweet sorghum. The overexpression of SbbHLH85 resulted in significantly increased number and length of root hairs via ABA and auxin signaling pathways, increasing the absorption of Na+. Thus, SbbHLH85 plays a negative regulatory role in the salt tolerance of sorghum. We identified a potential interaction partner of SbbHLH85, which was phosphate transporter chaperone PHF1 and modulated the distribution of phosphate, through screening a yeast two-hybrid library. Both yeast two-hybrid and BiFC experiments confirmed the interaction between SbbHLH85 and PHF1. The overexpression of SbbHLH85 led to a decrease in the expression of PHF1 as well as the content of Pi. Based on these results, we suggested that the increase in the Na+ content and the decrease in the Pi content resulted in the salt sensitivity of transgenic sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15:63–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aleman F, Yazaki J, Lee M, Takahashi Y, Kim AY, Li ZX, Kinoshita T et al (2016) An ABA-increased interaction of the PYL6 ABA receptor with MYC2 transcription factor: a putative link of ABA and JA signaling. Entific Reports 6:28941

    CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H et al (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M (2015) Overexpression of EcbHLH57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt, oxidative and drought stress. PLoS ONE 10:e0137098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayle V, Arrighi JF, Creff A, Nespoulous C, Vialaret J, Rossignol M, Gonzalez E et al (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt C, Zhao MZ, Gonzalez A, Lloyd A, Schiefelbein J (2005) The bHLH genes GL3 and EGL3 participate in an intercellular regulatory circuit that controls cell patterning in the Arabidopsis root epidermis. Development 132:291–298

    Article  CAS  PubMed  Google Scholar 

  • Chen AH, Yang JL, Niu YD, Yang CP, Liu GF, Yu CY, Li CH (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell Tissue Organ Culture (PCTOC) 102:357–364

    Article  CAS  Google Scholar 

  • Chen HC, Hsieh-Feng V, Liao PC, Cheng WH, Liu LY, Yang YW, Lai MH et al (2017) The function of OsbHLH068 is partially redundant with its homolog, AtbHLH112, in the regulation of the salt stress response but has opposite functions to control flowering in Arabidopsis. Plant Mol Biol 94:531–548

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, H.C., Cheng, W.H., Hong, C.Y., Chang, Y.S. and Chang, M.C. (2018) The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 11.

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soils 44:501–509

    Article  CAS  Google Scholar 

  • Dalen, M.S., (2012) Understanding phosphorus dynamics of two alluvial soils grown with corn at different phosphorus rates. Louisiana State University.

  • Deng MJ, Wang F, Mao CZ (2017) Plant phosphate transporters and its molecular regulation mechanism. Plant Physiol J 53:377–387

    Google Scholar 

  • Do PT, Lee H, Mookkan M, Folk WR, Zhang ZJ (2016) Rapid and efficient agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Rep 35:2065–2076

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR et al (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewska, P., Janiak, A., Kwasniewski, M., Kedziorski, P. and Szarejko, I. (2018) Forward genetics approach reveals a mutation in bHLH transcription factor-encoding gene as the best candidate for the root hairless phenotype in barley. Front Plant Sci. 9.

  • Ganguly A, Lee SH, Cho HT (2012) Functional identification of the phosphorylation sites of Arabidopsis PIN-FORMED3 for its subcellular localization and biological role. Plant J 71:810–823

    Article  CAS  PubMed  Google Scholar 

  • González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate transporter traffic facilitator1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Jiang QY, Hu Z, Sun XJ, Fan SJ, Zhang H (2018) Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J 6:181–190

    Article  Google Scholar 

  • Guo Y, Xu CB, Sun XJ, Zheng H, Fan SJ, Jiang QY, Zhang H (2019) TaSAUR78 enhances multiple abiotic stress tolerance by regulating the interacting gene TaVDAC1. J Integr Agric 18:2682–2690

    Article  CAS  Google Scholar 

  • Harrison BR, Masson PH (2008) ARL2, ARG1 and PIN3 define a gravity signal transduction pathway in root statocytes. Plant J 53:380–392

    Article  CAS  PubMed  Google Scholar 

  • Herbst A, Kolligs FT (2008) A conserved domain in the transcription factor ITF-2B attenuates its activity. Biochem Bioph Res Co 370:327–331

    Article  CAS  Google Scholar 

  • Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J et al (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987

    Article  PubMed  Google Scholar 

  • Jiang YQ, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics 282:503–516

    Article  CAS  PubMed  Google Scholar 

  • Kim JY, Kim HY (2006) Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. Febs Lett 580:5251–5256

    Article  CAS  PubMed  Google Scholar 

  • Krasilnikoff G, Gahoonia T, Nielsen NE (2003) Variation in phosphorus uptake efficiency by genotypes of cowpea (Vigna unguiculata) due to differences in root and root hair length and induced rhizosphere processes. Plant Soil 251:83–91

    Article  CAS  Google Scholar 

  • Kwon T, Sparks JA, Nakashima J, Allen SN, Tang YH, Blancaflor EB (2015) Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Am J Bot 102:21–35

    Article  CAS  PubMed  Google Scholar 

  • Lewis DR, Negi S, Sukumar P, Muday GK (2011) Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Development 138:3485–3495

    Article  CAS  PubMed  Google Scholar 

  • Li F, Guo SY, Zhao YA, Chen DZ, Chong K, Xu YY (2010) Overexpression of a homopeptide repeat-containing bHLH protein gene (OrbHLH001) from Dongxiang Wild Rice confers freezing and salt tolerance in transgenic Arabidopsis. Plant Cell Rep 29:977–986

    Article  CAS  PubMed  Google Scholar 

  • Li L, Gao WW, Peng Q, Zhou B, Kong QH, Ying YH, Shou HX (2018) Two soybean bHLH factors regulate response to iron deficiency. J Integr Plant Biol 60:608–622

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Ji XY, Nie XG, Qu M, Zheng L, Tan ZL, Zhao HM et al (2015a) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li RJ, Han TT, Cai W, Fu ZW, Lu YT (2015b) Salt stress reduces root meristem size by nitric oxide-mediated modulation of auxin accumulation and signaling in arabidopsis. Plant Physiol 168:343–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor popeye regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22:2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv SF, Yu DY, Sun QQ, Jiang J (2018) Activation of gibberellin 20-oxidase 2 undermines auxin-dependent root and root hair growth in NaCl-stressed Arabidopsis seedlings. Plant Growth Regul 84:225–236

    Article  CAS  Google Scholar 

  • Ma CL, Liu XH, Chen SY (2005) Changes in mineral element contents in pomelo and citrus seedlings under salt stress. J Trop Subtrop Botany 13:333–337

    CAS  Google Scholar 

  • Ma NN, Zuo YQ, Liang XQ, Yin B, Wang GD, Meng QW (2013) The multiple stress-responsive transcription factor SlNAC1 improves the chilling tolerance of tomato. Physiol Plantarum 149:474–486

    Article  CAS  Google Scholar 

  • Maia AM, Silva JHD, Mencalha AL, Caffarena ER, Abdelhay E (2012) Computational modeling of the bHLH domain of the transcription factor TWIST1 and R118C, S144R and K145E mutants. BMC Bioinform 13:184

    Article  CAS  Google Scholar 

  • Mangano S, Denita-Juarez SP, Choi HS, Marzol E, Hwang Y, Ranocha P, Velasquez SM et al (2017) Molecular link between auxin and ROS-mediated polar growth. P Natl Acad Sci USA 114:5289–5294

    Article  CAS  Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2005) Growth, phosphorus uptake, and rhizosphere microbial-community composition of a phosphorus-efficient wheat cultivar in soils differing in pH. J Plant Nutr Soil Sci 168:343–351

    Article  CAS  Google Scholar 

  • Menand B, Yi KK, Jouannic S, Hoffmann L, Ryan E, Linstead P, Schaefer DG et al (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316:1477–1480

    Article  CAS  PubMed  Google Scholar 

  • Miao HY, Zhao JF, Li XJ, Sun ZH, Lu WJ, Gu JT, Guo CJ et al (2009) Cloning and expression of wheat transcription factor gene TaWRKY72b-1 and its effect on phosphorus use efficiency in transgenic tobacco plants. Acta Agron Sin 35:2029–2036

    Article  CAS  Google Scholar 

  • Min JH, Chung JS, Lee KH, Kim CS (2015) The constans-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol 57:313–324

    Article  CAS  PubMed  Google Scholar 

  • Monlau F, Sambusiti C, Ficara E, Aboulkas A, Barakat A, Carrere H (2015) New opportunities for agricultural digestate valorization: current situation and perspectives. Energ Environ Sci 8:2600–2621

    Article  CAS  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31:341–353

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan, V.K., (2010). Dissecting the roles of MYB-related transcription factor PRF1 and high-affinity Pi transporter Pht1;5 in pathways regulating phosphate mobilization in Arabidopsis. Purdue University.

  • Nishimura N, Hitomi K, Arvai AS, Rambo RP, Hitomi C, Cutler SR, Schroeder JI et al (2009) Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh E, Yamaguchi S, Hu JH, Yusuke J, Jung B, Paik I, Lee HS et al (2007) PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19:1192–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra AS, Gonugunta VK, Christmann A, Grill E (2010) ABA perception and signalling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rymen B, Kawamura A, Schaefer S, Breuer C, Sugimoto K (2017) ABA suppresses root hair growth via OBP4 transcriptional-regulator repression of the RSL2 promoter. Plant Physiol 173:1945–2016

    Article  Google Scholar 

  • Sailsbery, J.K. and Dean, R.A. (2012). Accurate discrimination of bHLH domains in plants, animals, and fungi using biologically meaningful sites. BMC Evol. Biol. 12.

  • Schlicht M, Šamajová O, Schachtschabel D, Mancuso S, Menzel D, Boland W, Baluska F (2008) D’orenone blocks polarized tip growth of root hairs by interfering with the PIN2-mediated auxin transport network in the root apex. Plant J 55:709–717

    Article  CAS  PubMed  Google Scholar 

  • Schnippenkoetter W, Lo C, Liu GQ, Dibley K, Chan WL, White J, Milne R, Zwart A et al (2017) The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum. Plant Biotechnol J 15:1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Song YS, Li JL, Liu ML, Meng Z, Liu KC, Sui N (2019) Nitrogen increases drought tolerance in maize seedlings. Funct Plant Biol 46:350–359

    Article  CAS  PubMed  Google Scholar 

  • Song YS, Li JL, Sui Y, Han GL, Zhang Y, Guo SJ, Sui N (2020) The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Plant Mol Biol 102:603–614

    Article  CAS  PubMed  Google Scholar 

  • Sui N, Yang Z, Liu ML, Wang BS (2015) Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics 16:534

    Article  PubMed  PubMed Central  Google Scholar 

  • Sui N, Tian SS, Wang WQ, Wang MJ, Fan H (2017) Overexpression of glycerol-3-phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis. Front Plant Sci 8:1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun FF, Zhang WS, Hu HZ, Li B, Wang YN, Zhao YK, Li KX et al (2008) Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis. Plant Physiol 146:178–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Wang C, Zhou YF, Ruan YY, Gong X, Zhang J, Huang RD (2016) Inhibition of SbABI5 Expression in Roots by ultra-high endogenous ABA accumulation results in sorghum sensitivity to salt stress. Int J Agric Biol 18:146

    Article  CAS  Google Scholar 

  • Sun HW, Guo XL, Xu FG, Wu DX, Zhang XH, Lou MM, Luo FF et al (2019) Overexpression of OsPIN2 regulates root growth and formation in response to phosphate deficiency in rice. Int J Mol Sci 20:5144

    Article  CAS  PubMed Central  Google Scholar 

  • Toledo-Ortiz G, Huq E, Quail PH (2003) The arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15:1749–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y et al (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. P Natl Acad Sci USA 106:17588–17593

    Article  CAS  Google Scholar 

  • Van MH, Van DADJ, Stortenbeker N, Angenent GC, Bemer M (2017) Divergent regulation of Arabidopsis SAUR genes: a focus on the SAUR10-clade. BMC Plant Biol 17:245

    Article  Google Scholar 

  • Vijayakumar P, Datta S, Dolan L (2016) Root hair defective six-like4 (RSL4) promotes root hair elongation by transcriptionally regulating the expression of genes required for cell growth. New Phytol 212:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanapu C, Shinmyo A (1996) Cis-regulatory elements of the peroxidase gene in Arabidopsis thaliana involved in root-specific expression and responsiveness to high-salt stress. Ann Ny Acad Sci 782:107–114

    Article  CAS  PubMed  Google Scholar 

  • Wang YN, Zhang WS, Li KX, Sun FF, Han CY, Wang YK, Li X (2008) Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. J Plant Res 121:87–96

    Article  PubMed  Google Scholar 

  • Wang Y, Yao Q, Chen KP (2010) Progress of studies on family members and functions of animal bHLH transcription factors. Hereditas 32:307–330

    CAS  PubMed  Google Scholar 

  • Wang, H., Lin, J., Li, X.G., Wang, Z.H., Chang, Y.H. (2014a). Molecular cloning of PbPYL4 gene and expression analysis of PbPYL4 and PbNCED2 in Pyrus betulaefolia under salt stress. J Fruit sci. 6.

  • Wang TT, Ren ZJ, Liu ZQ, Feng X, Guo RQ, Li BG, Li LG et al (2014b) SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na+/K+ balance under Na+ stress. J Integr Plant Biol 56:315–332

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Li CX, Wu ZH, Jia YC, Wang H, Sun SY, Mao CZ et al (2017) Abscisic acid regulates auxin homeostasis in rice root tips to promote root hair elongation. Front Plant Sci 8:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang WL, Wang WQ, Wu YZ, Li QX, Zhang GQ, Shi RR, Yang JJ et al (2020) The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance. J Integr Plant Biol 62:631–651

    Article  CAS  PubMed  Google Scholar 

  • Waseem M, Rong XY, Li ZG (2019) Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front Plant Sci 10:734

    Article  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Li J (2018) Receptor-like protein kinases: key regulators controlling root hair development in Arabidopsis thaliana. J Integr Plant Biol 60:841–850

    Article  CAS  PubMed  Google Scholar 

  • Yan A, Wu MJ, Zhao YQ, Zhang AD, Liu BH, Schiefelbein J, Gan YB (2014) Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in Arabidopsis. J Integr Plant Biol 56:1112–1117

    Article  CAS  PubMed  Google Scholar 

  • Yang T, Yan CL, Liang J, Li YH, Tang HH (2003) The nutrient elements distribution in Casuarina equisetifolia seedlings under salt stress. Subtropical Plant Ence 32:1–4

    Google Scholar 

  • Yang Z, Zheng HX, Wei XC, Song J, Wang BS, Sui N (2018) Transcriptome analysis of sweet sorghum inbred lines differing in salt tolerance provides novel insights into salt exclusion by roots. Plant Soil 430:423–439

    Article  CAS  Google Scholar 

  • Yao XN, Cai YR, Yu DQ, Liang G (2018) bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. J Integr Plant Biol 60:691–702

    Article  CAS  PubMed  Google Scholar 

  • Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF et al (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:147–157

    Article  Google Scholar 

  • Zhou J, Li F, Wang JL, Ma Y, Chong K, Xu YY (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt- and osmotic stress in Arabidopsis. J Plant Physiol 166:1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Zhu SR, Javier MP, José ME, Yu F (2020) Autocrine regulation of root hair size by the RALF-FERONIA-RSL4 signaling pathway. New Phytol 227:45–49

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by financial support from the National Key R&D Program of China (2018YFD1000700, 2018YFD1000704, 2019YFD1002703), the National Natural Science Research Foundation of China (31871538, U1906204), Shandong Province Key Research and Development Program (2019GSF107079), the Development Plan for Youth Innovation Team of Shandong Provincial (2019KJE012), the Science and Technology Demonstration Project of "Bohai Granary" of Shandong Province (2019BHLC002). We would like to thank Professor Hongwei Guo of Southern University of Science and Technology for providing the double mutant rsl2rsl4.

Author information

Authors and Affiliations

Authors

Contributions

NS and YS planned and designed the research; YS, SL, YS, HZ, WY and XS performed experiments; NS, YS, GH, HW, KZ and FK collected data and carried out all analyses; YS, HZ and NS wrote the paper. NS and QM revised the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Na Sui.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Emma Mace.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Figure 1. Amino acid sequence of SbbHLH85 (TIF 762 KB)

Supplementary Figure 2. Expression of SbbHLH85 in Arabidopsis transgenic lines (TIF 981 KB)

122_2021_3960_MOESM3_ESM.tif

Supplementary Figure 3. (A) Phenotype of Arabidopsis lines under NaCl, LiCl, and mannitol treatment conditions. (B) Germination rate statistics of Arabidopsis lines under NaCl, LiCl, and mannitol treatment conditions. (C) Root length statistics of Arabidopsis under NaCl, LiCl, and mannitol treatment conditions. (D and E) DAB and NBT in WT and transgenic plants under salt stress. Data are presented as the mean ± standard deviation of five measurements. Means with different letters are significantly different at P < 0.05 (TIF 21303 KB)

122_2021_3960_MOESM4_ESM.tif

Supplementary Figure 4. (A) Biomass of WT and transgenic Arabidopdis under salt stress. (B) MDA content of WT and transgenic Arabidopdis under salt stress. (C) Biomass of WT and restocking lines of Arabidopdis under salt stress. (D) MDA content of WT and restocking lines of Arabidopdis under salt stress (TIF 484 KB)

122_2021_3960_MOESM5_ESM.tif

Supplementary Figure 5. (A) Na+/ K+ ratio of WT and overexpressing lines of sorghum under salt stress. (B) MDA content of WT and overexpressing lines of sorghum under salt stress (TIF 327 KB)

122_2021_3960_MOESM6_ESM.tif

Supplementary Figure 6. (A) Venn diagram of the numbers of expressed genes in the WT, At-OX13, rsl2-3, and rsl2rsl4 lines before and after salt stress. (B) RNA sequences of 22 representative genes were verified by qRT-PCR. (C) Kyoto Encyclopedia of Genes and Genomes analyses of the differentially expressed genes (DEGs) between WT, At-OX13, rsl2-3, and rsl2rsl4 lines before and after salt stress (TIF 15955 KB)

122_2021_3960_MOESM7_ESM.tif

Supplementary Figure 7. Gene Ontology Consortium analyses of the differentially expressed genes (DEGs) between WT, At-OX13, rsl2-3, and rsl2rsl4 lines before and after salt stress (TIF 1013 KB)

122_2021_3960_MOESM8_ESM.tif

Supplementary Figure 8. KOG analyses of the differentially expressed genes (DEGs) between WT, At-OX13, rsl2-3, and rsl2rsl4 lines before and after salt stress (TIF 543 KB)

Supplementary file9 (DOCX 20 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Li, S., Sui, Y. et al. SbbHLH85, a bHLH member, modulates resilience to salt stress by regulating root hair growth in sorghum. Theor Appl Genet 135, 201–216 (2022). https://doi.org/10.1007/s00122-021-03960-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03960-6

Navigation