Skip to main content
Log in

Mapping QTL for seedling morphological and physiological traits under normal and salt treatments in a RIL wheat population

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The genetic basis of 27 seedling traits under normal and salt treatments was fully analyzed in a RIL wheat population, and seven QTL intervals were validated in two other genetic populations.

Abstract

Soil salinity seriously constrains wheat (Triticum aestivum L.) production globally by influencing its growth and development. To explore the genetic basis of salt tolerance in wheat, a recombinant inbred line (RIL) population derived from a cross between high-yield wheat cultivar Zhongmai 175 (ZM175) and salt-tolerant cultivar Xiaoyan 60 (XY60) was used to map QTL for seedling traits under normal and salt treatments based on a high-density genetic linkage map. A total of 158 stable additive QTL for 27 morphological and physiological traits were identified and distributed on all wheat chromosomes except 3A and 4D. They explained 2.35–46.43% of the phenotypic variation with a LOD score range of 2.61–40.38. The alleles from XY60 increased corresponding traits for 100 QTL, while the alleles from ZM175 had positive effects for the other 58 QTL. Nearly half of the QTL (78/158) were mapped in nine QTL clusters on chromosomes 2A, 2B, 2D, 4B, 5A, 5B, 5D, and 7D (2), respectively. To prove the reliability and potentiality in molecular marker-assisted selection (MAS), seven QTL intervals were validated in two other genetic populations. Besides additive QTL, 94 pairs of loci were detected with significant epistatic effect and 20 QTL were found to interact with treatment. This study provides a full elucidation of the genetic basis of seedling traits (especially root system-related traits) associated with salt tolerance in wheat, and the developed kompetitive allele-specific PCR markers closely linked to stable QTL would supply strong supports to MAS in salt-tolerant wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali Z, Park HC, Ali A, Oh D-H, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim W-Y, Bressan RA, Bohnert HJ, Lee SY, Yun D-J (2012) TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158:1463–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Pearson AS (2018) Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. Theor Appl Genet 131:2179–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Schilling RK, Short L, Trittermann C, Gilliham M, Fleury D, Roy SJ, Pearson AS (2021) Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol 48:131–140

    Article  CAS  PubMed  Google Scholar 

  • Azadi A, Mardi M, Hervan EM, Mohammadi SA, Moradi F, Tabatabaee MT, Pirseyedi SM, Ebrahimi M, Fayaz F, Kazemi M, Ashkani S, Nakhoda B, Mohammadi-Nejad G (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep 33:102–120

    Article  CAS  Google Scholar 

  • Borrill P, Adamski N, Uauy C (2015) Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208:1008–1022

    Article  PubMed  Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M, Gilliham M (2014) The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. Plant J 80:516–526

    Article  CAS  PubMed  Google Scholar 

  • Cao P, Ren Y, Zhang K, Teng W, Zhao X, Dong Z, Liu X, Qin H, Li Z, Wang D, Tong Y (2014) Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Mol Breed 33:975–985

    Article  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Fonzo ND, Faccioli P, Grossi M, Mastrangelo AM, Pecchioni N, Stanca AM (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–665

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675

    Article  PubMed  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davenport RJ, Munoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507

    Article  CAS  PubMed  Google Scholar 

  • De Leon JLD, Escoppinichi R, Geraldo N, Castellanos T, Mujeeb-Kazi A, Roder MS (2011) Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica 181:371–383

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi R, Ram S, Rana V, Malik VK, Pande V, Singh GP (2019) QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 215:23

    Article  CAS  Google Scholar 

  • Dias J (2015) Plant breeding for harmony between modern agriculture production and the environment. Agric Sci 6:87–116

    Google Scholar 

  • Do TD, Vuong TD, Dunn D, Smothers S, Patil G, Yungbluth DC, Chen P, Scaboo A, Xu D, Carter TE, Nguyen HT, Grover Shannon J (2018) Mapping and confirmation of loci for salt tolerance in a novel soybean germplasm, Fiskeby III. Theor Appl Genet 131:513–524

    Article  CAS  PubMed  Google Scholar 

  • Doebley J, Stec A (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubcovsky J, María GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Dvorak J, Gorham J (1992) Methodology of gene transfer by homoeologous recombination into Triticum turgidum: transfer of K+/Na+ discrimination from Triticum aestivum. Genome 35:639–646

    Article  Google Scholar 

  • Fan X, Zhang W, Zhang N, Chen M, Zheng S, Zhao C, Han J, Liu J, Zhang X, Song L, Ji J, Liu X, Ling H, Tong Y, Cui F, Wang T, Li J (2018) Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theor Appl Genet 131:2677–2698

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Yeo AR (1995) Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Google Scholar 

  • Flowers TJ, Garcia A, Koyama M, Yeo AR (1997) Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiol Plant 19:427–433

    Article  CAS  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C, Bennett EM, Carpenter SR, Hill J, Monfreda C, Polasky S, Rockstrom J, Sheehan J, Siebert S, Tilman D, Zaks DP (2011) Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Gogel B, Wallwork H, McDonald GK, Smith AB (2013) Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed 32:39–59

    Article  Google Scholar 

  • Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghaedrahmati M, Mardi M, Naghavi MR, Haravan EM, Nakhoda B, Azadi A, Kazemi M (2014) Mapping QTLs associated with salt tolerance related traits in seedling stage of wheat (Triticum aestivum L.). J Agric Sci Technol 16:1413–1428

    Google Scholar 

  • Gorham J, Hardy C, Jones RGW, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D-genome of wheat. Theor Appl Genet 74:584–588

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Jones RGW, Bristol A (1990) Partial characterization of the trait for enhanced K+/Na+ discrimination in the D genome of wheat. Planta 180:590–597

    Article  CAS  PubMed  Google Scholar 

  • Gorham J, Bridges J, Dubcovsky J, Dvorak J, Hollington PA, Luo MC, Khan JA (1997) Genetic analysis and physiology of a trait for enhanced K+/Na+ discrimination in wheat. New Phytol 137:109–116

    Article  CAS  Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125:671–683

    Article  CAS  PubMed  Google Scholar 

  • Hao ZF, Chang XP, Guo XJ, Jing RL, Jia JZ (2003) QTL mapping for drought tolerance at stages of germination and seedling in wheat (Triticum aestivum L.) using a DH population. Agric Sci China 2:943–949

    Google Scholar 

  • Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SB, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns R (2006) A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang SB, Spielmeyer W, Lagudah ES, Munns R (2008) Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. J Exp Bot 59:927–937

    Article  CAS  PubMed  Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep 7:15662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ilyas N, Amjid MW, Saleem MA, Khan W, Wattoo FM, Rana RM, Maqsood RH, Zahid A, Shah GA, Anwar A, Ahmad MQ, Shaheen M, Riaz H, Ansari MJ (2020) Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition. Saudi J Biol Sci 27:341–351

    Article  CAS  PubMed  Google Scholar 

  • Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg LH (2019) Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield-related traits under saline conditions. Euphytica 215:25

    Article  CAS  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Li ZK, Pinson SRM, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three grain yield components in Rice (Oryza Sativa L.). Genetics 145:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li B, Tong Y (2008) The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genom 35:451–456

    Article  Google Scholar 

  • Li L, Peng Z, Mao X, Wang J, Chang X, Reynolds M, Jing R (2019) Genome-wide association study reveals genomic regions controlling root and shoot traits at late growth stages in wheat. Ann Bot 124:993–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay MP, Lagudah ES, Hare RA, Munns R (2004) A locus for sodium exclusion (Nax1), a trait for salt tolerance, mapped in durum wheat. Funct Plant Biol 31:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Dubcovsky J, Goyal S, Dvorak J (1996) Engineering of interstitial foreign chromosome segments containing the K+/Na+ selectivity gene Kna1 by sequential homoeologous recombination in durum wheat. Theor Appl Genet 93:1180–1184

    Article  CAS  PubMed  Google Scholar 

  • Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z (2021) Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet 134:171–189

    Article  CAS  PubMed  Google Scholar 

  • Ma LQ, Zhou EF, Huo NX, Zhou RH, Wang GY, Jia JZ (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117

    Article  CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    Article  CAS  PubMed  Google Scholar 

  • Masoudi B, Mardi M, Hervan EM, Bihamta MR, Naghavi MR, Nakhoda B, Amini A (2015) QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep 33:1790–1803

    Article  CAS  Google Scholar 

  • Matthew R, David B, Chapman SC, Furbank RT, Yann M, Parry MAJ (2011) Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot 62:439–452

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya F, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq M, León J, Ashraf M, Rajaram S (2019) Breeding strategies for structuring salinity tolerance in wheat. Adv Agron 155:121–187

    Article  Google Scholar 

  • Munns R, Gilliham M (2015) Salinity tolerance of crops—what is the cost? New Phytol 208:668–673

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotech 30:360–364

    Article  CAS  Google Scholar 

  • Nezhad NM, Kamali MRJ, McIntyre CL, Fakheri BA, Omidi M, Masoudi B (2019) Mapping QTLs with main and epistatic effect on Seri “M82 × Babax” wheat population under salt stress. Euphytica 215:19

    Article  CAS  Google Scholar 

  • Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Leon J, Ballvora A (2018) Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ 41:919–935

    Article  CAS  PubMed  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin H-X, Luan S, Maeser P, Pantoja O, Rodriguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Very A-A, Zhu J-K, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  PubMed  Google Scholar 

  • Prashant R, Kadoo N, Desale C, Kore P, Dhaliwal HS, Chhuneja P, Gupta V (2012) Kernel morphometric traits in hexaploid wheat (Triticum aestivum L.) are modulated by intricate QTL × QTL and genotype × environment interactions. J Cereal Sci 56:432–439

    Article  CAS  Google Scholar 

  • Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci 99:8436–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, International Wheat Genome Sequencing C, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Brautigam A, Uauy C (2018) The transcriptional landscape of polyploid wheat. Science 361:eaar6089

  • Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Ren Y, He X, Liu D, Li J, Zhao X, Li B, Tong Y, Zhang A, Li Z (2012) Major quantitative trait loci for seminal root morphology of wheat seedlings. Mol Breed 30:139–148

    Article  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Shah SH, Gorham J, Forster BP, Jones RGW (1987) Salt tolerance in the Triticeae: the contribution of the D genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269

    Article  CAS  Google Scholar 

  • Shi HZ, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotech 21:81–85

    Article  CAS  Google Scholar 

  • Soriano JM, Alvaro F (2019) Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 9:14

    Article  CAS  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot Lond 91:503–527

    Article  CAS  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  Google Scholar 

  • Venuprasad R, Bool ME, Quiatchon L, Atlin GN (2012) A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet 124:323–332

    Article  CAS  PubMed  Google Scholar 

  • Vikram P, Swamy MB, Dixit S, Ahmed UH, Cruz MTS, Singh AK, Kumar A (2011) qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two solanum populations of F7 lines. Theor Appl Genet 114:1001–1017

    Article  CAS  PubMed  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Article  Google Scholar 

  • Xu S, Jia Z (2007) Genomewide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, An D, Liu D, Zhang A, Xu H, Li B (2012) Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Article  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283

    Article  CAS  Google Scholar 

  • Xue D, Huang Y, Zhang X, Wei K, Westcott S, Li C, Chen M, Zhang G, Lance R (2009) Identification of QTLs associated with salinity tolerance at late growth stage in barley. Euphytica 169:187–196

    Article  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    Article  CAS  PubMed  Google Scholar 

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci 94:9226–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Tian J, Zhao L, Wang S (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genom 35:119–127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Jing Ruilian and Dr. Li Long at the Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, for their generous help in QTL validation with “Hanxuan 10/Lumai 14” DH population. We also thank Prof. Liu Dongcheng in Hebei Agricultural University for his generous help in QTL validation with “Xiaoyan 54/Jing 411” RIL population. This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA24030302) and the National Natural Science Foundation of China (No. 31971875).

Author information

Authors and Affiliations

Authors

Contributions

ZSL and QZ supervised the research. QZ and QLL designed the experiment. QLL and QZ performed the phenotypes of ZX RIL population. PH and QLL performed the phenotypes of XJ and HL population. QLL performed data analysis and QTL mapping, confirmed the QTL effects and wrote the manuscript. QZ also put forward many constructive suggestions and revised the manuscript. GTY, HWL, LQL, ZSW, and BL provided a lot of help in the phenotype identification and materials preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Qi Zheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Communicated by Mark E. Sorrells.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2021_3872_MOESM1_ESM.pdf

Fig. S1 Detection of QTL for sNa on chromosome 2B and 5A using two kinds of mapping software. The solid lines in dark color on LOD graph denote the QTL detected with IciMapping 4.1; the dashed lines in light color denote the QTL detected with WinQTLCart 2.5. (PDF 41 kb)

122_2021_3872_MOESM2_ESM.tif

Fig. S2 Validation of QTL for SWC on chromosome 6B. The markers along the chromosomes in blue were the same SNPs in the common QTL intervals in ZX and XJ populations. (TIF 12904 kb)

122_2021_3872_MOESM3_ESM.tif

Fig. S3 Distribution of 158 QTL on all 21 wheat chromosomes. X-axis for each chromosome, Y-axis for the QTL number. (TIF 2100 kb)

122_2021_3872_MOESM4_ESM.tif

Fig. S4 Genotyping of 24 ZX RILs with the six developed KASP markers in this study. The genotypes obtained using KASP markers were coincided with the genotyping results on the Wheat55K SNP array. (TIF 11975 kb)

Supplementary file 5 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Q., Hu, P., Yang, G. et al. Mapping QTL for seedling morphological and physiological traits under normal and salt treatments in a RIL wheat population. Theor Appl Genet 134, 2991–3011 (2021). https://doi.org/10.1007/s00122-021-03872-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03872-5

Navigation