Skip to main content
Log in

High-density NGS-based map construction and genetic dissection of fruit shape and rind netting in Cucumis melo

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Melon is an important crop that exhibits broad variation for fruit morphology traits that are the substrate for genetic mapping efforts. In the post-genomic era, the link between genetic maps and physical genome assemblies is key for leveraging QTL mapping results for gene cloning and breeding purposes. Here, using a population of 164 melon recombinant inbred lines (RILs) that were subjected to genotyping-by-sequencing, we constructed and compared high-density sequence- and linkage-based recombination maps that were aligned to the reference melon genome. These analyses reveal the genome-wide variation in recombination frequency and highlight regions of disrupted collinearity between our population and the reference genome. The population was phenotyped over 3 years for fruit size and shape as well as rind netting. Four QTLs were detected for fruit size, and they act in an additive manner, while significant epistatic interaction was found between two neutral loci for this trait. Fruit shape displayed transgressive segregation that was explained by the action of four QTLs, contributed by alleles from both parents. The complexity of rind netting was demonstrated on a collection of 177 diverse accessions. Further dissection of netting in our RILs population, which is derived from a cross of smooth and densely netted parents, confirmed the intricacy of this trait and the involvement of major locus and several other interacting QTLs. A major netting QTL on chromosome 2 co-localized with results from two additional populations, paving the way for future study toward identification of a causative gene for this trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aharoni A, Dixit S, Jetter R, Thoenes E, van Arkel G, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in arabidopsis. Plant Cell 16:2463–2480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer E, Falque M, Walter H, Bauland C, Camisan C, Campo L, Meyer N, Ranc N, Rincent R, Schipprack W, Altmann T, Flament P, Melchinger AE, Menz M, Moreno-González J, Ouzunova M, Revilla P, Charcosset A, Martin OC, Schön CC (2013) Intraspecific variation of recombination rate in maize. Genome Biol 14:R103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B 26:211–243

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl. Springer, New York

    Book  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Burger Y, Paris HS, Cohen R, Katzir N, Tadmor Y, Lewinsohn E, Schaffer AA (2009) Genetic diversity of Cucumis Melo. In: Janick J (ed) Horticultural reviews. Wiley, Hoboken, pp 165–198

    Google Scholar 

  • Cahaner A, Hillel J (1980) Estimating heritability and genetic correlation between traits from generations F2 and F 3 of self-fertilizing species: a comparison of three methods. Theor Appl Genet 58:33–38

    Article  PubMed  CAS  Google Scholar 

  • Chakravarti A (1991) A graphical representation of genetic and physical maps: the Marey map. Genomics 11(1):219–222

    Article  PubMed  CAS  Google Scholar 

  • Chang C-W, Wang Y-H, Tung C-W (2017) Genome-wide single nucleotide polymorphism discovery and the construction of a high-density genetic map for melon (Cucumis melo L.) using genotyping-by-sequencing. Front Plant Sci 8:125

    PubMed  PubMed Central  Google Scholar 

  • Chang LY, HE SP, Liu Q, Xiang JL, Huang DF (2018) Quantifying muskmelon fruit attributes with A-TEP-based model and machine vision measurement. J Integr Agric 17:1369–1379

    Article  Google Scholar 

  • Chu YH, Jang JC, Huang Z, van der Knaap E (2019) Tomato locule number and fruit size controlled by natural alleles of lc and fas. Plant Direct 3:e00142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen H, Dong Y, Szymanski JJ, Lashbrooke JG, Meir S, Almekias-Siegl E, Zeisler-Diehl VV, Schreiber L, Aharoni A (2019) A multilevel study of melon fruit reticulation provides insight into skin ligno-suberization hallmarks. Plant Physiol 179:1486–1501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collard BCY, Mackill DJ (2007) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Qiu Z, Wang Z, Gao J, Guo Y, Huang Z, Du Y, Wang X (2017) Fine mapping of a gene (ER4.1)that causes epidermal reticulation of tomato fruit and characterization of the associated transcriptome. Front Plant Sci 8:1–13

    Google Scholar 

  • Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, Staub JE, Zalapa JE, Cuevas HE, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, van Koert P, Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Katzir N, Xu Y, Zhang H, Fukino N, Matsumoto S, Garcia-Mas J, Monforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111–125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, Katzir N, Garcia-Mas J, Monforte AJ (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed 35:1–7

    Article  CAS  Google Scholar 

  • Díaz A, Zarouri B, Fergany M, Eduardo I, Álvarez JM, Picó B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into “Piel de Sapo” melon (Cucucumis melo L.). PLoS One 9:e104188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz A, Martín-Hernández AM, Dolcet-Sanjuan R, Garcés-Claver A, Álvarez JM, Garcia-Mas J, Picó B, Monforte AJ (2017) Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theor Appl Genet 130:1837–1856

    Article  PubMed  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ, Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, María Álvarez J, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Article  Google Scholar 

  • Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei Z, Xu Y, Mao L, Jiao C, Harel-Beja R, Doron-Faigenboim A, Tzfadia O, Bar E, Meir A, Sa’ar U U, Fait A, Halperin E, Kenigswald M, Fallik E, Lombardi N, Kol G, Ronen G, Burger Y, Gur A, Tadmor Y, Portnoy V, Schaffer AA, Lewinsohn E, Giovannoni JJ, Katzir N (2018) Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94:169–191

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z (2019) The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51:1044–1051

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, Casacuberta JM, Arús P, Puigdomènech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A 109:11872–11877

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerchikov N, Keren-Keiserman A, Perl-Treves R, Ginzberg I (2008) Wounding of melon fruits as a model system to study rind netting. Sci Hortic (Amsterdam) 117:115–122

    Article  Google Scholar 

  • Gonda I, Ashrafi H, Lyon DA, Strickler SR, Hulse-Kemp AM, Ma Q, Sun H, Stoffel K, Powell AF, Futrell S, Thannhauser TW, Fei Z, Van Deynze AE, Mueller LA, Giovannoni JJ, Foolad MR (2019) Sequencing-based bin map construction of a tomato mapping population, facilitating high-resolution quantitative trait loci detection. Plant Genome 12:1–66

    Article  CAS  Google Scholar 

  • Gur A, Tzuri G, Meir A, Sa’ar U, Portnoy V, Katzir N, Schaffer AA, Li L, Burger J, Tadmor Y (2017) Genome-wide linkage-disequilibrium mapping to the candidate gene level in melon (Cucumis melo). Sci Rep 7:9770

    Article  PubMed  PubMed Central  Google Scholar 

  • Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533

    Article  PubMed  CAS  Google Scholar 

  • Hovav R, Chehanovsky N, Moy M, Jetter R, Schaffer AA (2007) The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfissuring and dehydration when expressed in tomato fruit. Plant J 52:627–639

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Van Houten J, Gonzalez G, Xiao H, Van Der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genom 288:111–129

    Article  CAS  Google Scholar 

  • Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin C-S, Guill K, Regulski M, Kumari S, Olson A, Gent J, Schneider KL, Wolfgruber TK, May MR, Springer NM, Antoniou E, McCombie WR, Presting GG, McMullen M, Ross-Ibarra J, Dawe RK, Hastie A, Rank DR, Ware D (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keren-Keiserman A, Tanami Z, Shoseyov O, Ginzberg I (2004a) Differing rind characteristics of developing fruits of smooth and netted melons (Cucumis melo). J Hortic Sci Biotechnol 79:107–113

    Article  Google Scholar 

  • Keren-Keiserman A, Tanami Z, Shoseyov O, Ginzberg I (2004b) Peroxidase activity associated with suberization processes of the muskmelon (Cucumis melo) rind. Physiol Plant 121:141–148

    Article  PubMed  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lashbrooke J, Cohen H, Levy-Samocha D, Tzfadia O, Panizel I, Zeisler V, Massalha H, Stern A, Trainotti L, Schreiber L, Costa F, Aharoni A (2016) MYB107 and MYB9 homologs regulate suberin deposition in angiosperms. Plant Cell 28:2097–2116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazzaro MD, Wu S, Snouffer A, Wang Y, van der Knaap E (2018) Plant organ shapes are regulated by protein interactions and associations with microtubules. Front Plant Sci 9:1–12

    Article  Google Scholar 

  • Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Picó B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet 16:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lloyd A, Morgan C, Franklin FCH, Bomblies K (2018) Plasticity of meiotic recombination rates in response to temperature in arabidopsis. Genetics 208:1409–1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu F, Romay MC, Glaubitz JC, Bradbury PJ, Elshire RJ, Wang T, Li Y, Li Y, Semagn K, Zhang X, Hernandez AG, Mikel MA, Soifer I, Barad O, Buckler ES (2015) High-resolution genetic mapping of maize pan-genome sequence anchors. Nat Commun 6:1–8

    CAS  Google Scholar 

  • Lv J, Fu Q, Lai Y, Zhou M, Wang H (2018) Inheritance and gene mapping of spotted to non-spotted trait gene CmSp-1 in melon (Cucumis melo L. var. chinensis Pangalo). Mol Breed 38:1–9

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation dna sequencing data. Genome Res 20:1297–1303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao H, Zhang S, Wang X, Zhang Z, Li M, Mu S, Cheng Z, Zhang R, Huang S, Xie B, Fang Z, Zhang Z, Weng Y, Gu X (2011) A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 182:167–176

    Article  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Diaz A, Caño-Delgado A, Van Der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637

    Article  PubMed  CAS  Google Scholar 

  • Moreno E, Obando JM, Dos-Santos N, Fernández-Trujillo JP, Monforte AJ, Garcia-Mas J (2008) Candidate genes and QTLs for fruit ripening and softening in melon. Theor Appl Genet 116:589–602

    Article  PubMed  CAS  Google Scholar 

  • Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier M-C, Delalande C, Bouzayen M, Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oren E, Tzuri G, Vexler L, Dafna A, Meir A, Faigenboim A, Kenigswald M, Portnoy V, Schaffer AA, Levi A, Buckler ES, Katzir N, Burger J, Tadmor Y, Gur A (2019) The multi-allelic APRR2 gene is associated with fruit pigment accumulation in melon and watermelon. J Exp Bot 70:3781–3794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breed 22:405–419

    Article  CAS  Google Scholar 

  • Pereira L, Ruggieri V, Pérez S, Alexiou KG, Fernández M, Jahrmann T, Pujol M, Garcia-Mas J (2018) QTL mapping of melon fruit quality traits using a high-density GBS-based genetic map. BMC Plant Biol 18:324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266:933–941

    Article  CAS  Google Scholar 

  • Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips P (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillips D, Jenkins G, Macaulay M, Nibau C, Wnetrzak J, Fallding D, Colas I, Oakey H, Waugh R, Ramsay L (2015) The effect of temperature on the male and female recombination landscape of barley. New Phytol 208:421–429

    Article  PubMed  CAS  Google Scholar 

  • Pitrat M (2008) Melon. Springer, New York

    Book  Google Scholar 

  • Pitrat M (2013) Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnol 30:273–278

    Article  CAS  Google Scholar 

  • Puthmee T, Takahashi K, Sugawara M, Kawamata R, Motomura Y, Nishizawa T, Aikawa T, Kumpoun W (2013) The role of net development as a barrier to moisture loss in netted melon fruit (Cucumis melo L.). HortScience 48:1463–1469

    Article  Google Scholar 

  • Ramamurthy RK, Waters BM (2015) Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 204:163–177

    Article  Google Scholar 

  • Razem FA, Bernards MA (2002) Hydrogen peroxide is required for poly(phenolic) domain formation during wound-induced suberization. J Agric Food Chem 50:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Rett-Cadman S, Colle M, Mansfeld B et al (2019) QTL and transcriptomic analyses implicate cuticle transcription factor shine as a source of natural variation for epidermal traits in cucumber fruit. Front Plant Sci 10:1536

    Article  PubMed  PubMed Central  Google Scholar 

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753–769

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ríos P, Argyris J, Vegas J, Leida C, Kenigswald M, Tzuri G, Troadec C, Bendahmane A, Katzir N, Picó B, Monforte AJ, Garcia-Mas J (2017) ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. Plant J 91:671–683

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez G, Strecker J, Brewer M, Gonzalo MJ, Anderson C, Lang L, Sullivan D, Wagner E, Strecker B, Drushal R, Dujmovic N, Fujimuro K, Jack A, Njanji I, Thomas J, Gray S, Knaap E Van Der (2010) Tomato analyzer user manual version 3

  • Ruggieri V, Alexiou KG, Morata J, Argyris J, Pujol M, Yano R, Nonaka S, Ezura H, Latrasse D, Boualem A, Benhamed M, Bendahmane A, Cigliano RA, Sanseverino W, Puigdomènech P, Casacuberta JM, Garcia-Mas J (2018) An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci Rep 8:8088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanseverino W, Hénaff E, Vives C, Pinosio S, Burgos-Paz W, Morgante M, Ramos-Onsins SE, Garcia-Mas J, Casacuberta JM (2015) Transposon insertions, structural variations, and SNPs contribute to the evolution of the melon genome. Mol Biol Evol 32:2760–2774

    Article  PubMed  CAS  Google Scholar 

  • Sedlazeck FJ, Rescheneder P, Smolka M, Fang H, Nattestad M, von Haeseler A, Schatz MC (2018) Accurate detection of complex structural variations using single-molecule sequencing. Nat Methods 15:461–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Studer AJ, Wang H, Doebley JF (2017) Selection during maize domestication targeted a gene network controlling plant and inflorescence architecture. Genetics 207:755–765

    PubMed  PubMed Central  CAS  Google Scholar 

  • Swarts K, Li H, Romero Navarro JA, An D, Romay MC, Hearne S, Acharya C, Glaubitz JC, Mitchell S, Elshire RJ, Buckler ES, Bradbury PJ (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 7:1–12

    Article  CAS  Google Scholar 

  • Sybenga J (1996) Recombination and chiasmata: few but intriguing discrepancies. Genome 39:473–484

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano LM, Kamoun S, Terauchi R (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  PubMed  CAS  Google Scholar 

  • Taylor J, Butler D (2017) R package ASMap: efficient genetic linkage map construction and diagnosis. J Stat Softw 79(6):1–28

    Article  Google Scholar 

  • Tzuri G, Zhou X, Chayut N, Yuan H, Portnoy V, Meir A, Sa’ar U, Baumkoler F, Mazourek M, Lewinsohn E, Fei Z, Schaffer A, Li L, Burger J, Katzir N, Tadmor Y (2015) A “golden” SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279

    Article  PubMed  CAS  Google Scholar 

  • Wolf JB, Brodie ED, Wade MJ (2000) Epistasis and the evolutionary process. Oxford University Press, Oxford

    Google Scholar 

  • Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, Chakrabarti M, Illa-Berenguer E, Taitano NK, Gonzalo MJ, Díaz A, Pan Y, Leisner CP, Halterman D, Buell CR, Weng Y, Jansky SH, van Eck H, Willemsen J, Monforte AJ, Meulia T, van der Knaap E (2018) A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun 9:4734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Yano R, Nonaka S, Ezura H (2018) Melonet-DB, a Grand RNA-Seq Gene Expression Atlas in Melon (Cucumis melo L.). Plant Cell Physiol 59:e4

    Article  PubMed  CAS  Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl 114:1185–1201

    Article  CAS  Google Scholar 

  • Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y, Fan D, Zhao Y, Wang Z, Zhou C, Chen J, Zhu C, Li W, Weng Q, Xu Q, Wang ZX, Wei X, Han B, Huang X (2018) Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50:278–284

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Uzi Sa’ar and Fabian Baumkoler for technical assistance in setting the field trials and for plant maintenance, and Tamar Lahav for R and python scripts. Funding for this research was provided by the Israeli Ministry of Agriculture Chief Scientist Grants Nos. 20-01-0141 and 20-10-0071 and by the United States-Israel Binational Agricultural Research and Development Fund (BARD) Grant No. US-5009-17.

Author information

Authors and Affiliations

Authors

Contributions

AG and EO conceived and designed the study. EO, AD, GT, AM and AG performed field experiments and phenotyping. NK, YE, SF, AAS, YT and JB provided genomic and statistical experimental support. EO and RK analyzed the data. EO and AG wrote the paper. All authors discussed the results and approved the manuscript.

Corresponding author

Correspondence to Amit Gur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sanwen Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure

 1: Number of double recombinations analysis across the 164 RILs (x axis) in three representative chromosomes, generated by ASMap (Taylor and Butler 2017. The plot annotates the genotypes that have double recombination rates significantly above the expected rate. Figure 2: Genetic map of TAD × DUL RILs. Each horizontal line represents a marker on a recombination point (bin). Blue segments are small linkage groups that were manually merged to their chromosome. Figure 3: Segregation and allele frequencies across lines and markers. a) Distribution of genome-wide allele frequencies across the 164 TAD × DUL RILs. For each line, the proportion of TAD alleles across all markers was calculated. Population average is not different than the expected 0.5 ratio, and distribution is normal. b) genome-wide marker segregation within chromosomes. Blue curves are sliding window representation of TAD allele frequencies across markers. Dashed horizontal lines represent significance threshold. Figure 4: Properties of linkage and sequence-based genetic maps along the 12 melon chromosomes. a) Recombination rates along the chromosomes of both genetic maps. Black solid—sequence-based genetic map. Blue dashed line—linkage-based genetic map. b) Correlation between sequence and linkage-based maps—recombination bins were aligned according to their GBS marker identity. Each dot represents a bin on its respective genetic coordinates (X-sequence-based, Y-linkage-based). The white dashed line marks the diagonal (x = y). Apart from inherent genetic length differences between the two approaches (linkage-based analysis yielded shorter maps), inconsistencies between maps are also visible (e.g., large inversion on chromosome 1 marked by red dashed circle). c) Bin size distributions in the sequence (upper graph) and linkage-based (lower graph) maps. Arrows mark the mean bin size in each map. Figure 5: Evaluation of the quality of the recombination maps through mapping of traits associated with known genes. Associations were tested using a generalized linear model to the physical map and Haley Knott regression interval mapping to the sequence-based genetic map. a) Flesh color locus presented on a Marey map of chromosome 9 on a 240 Kb–23 cM interval. b) Manhattan plot of the flesh color locus and zoom in on chromosome 9 peak, where the causative gene CmOr (MELO3C005449) is shown. c) Rind color locus presented on a Marey map of chromosome 4 on a 420 Kb–4 cM interval. d) Manhattan plot of the rind color locus and zoom in on chromosome 4 peak, where the causative gene CmAPRR2 (MELO3C003775) is shown. Figure 6: Correlation matrix between measured traits in TAD × DUL RILs across three experiments. Figure 7: Fruit weight (FW) QTL mapping results. a) Genome-wide LOD scores by standard interval mapping using Haley Knott regression method. Line color designates year, and the dotted line represents the LOD permutation threshold. b) LOD scores for chromosomes 4 and 8 by composite interval mapping. Figure 8: Fruit area (FAr) QTL mapping. a) Genome-wide LOD scores by standard interval mapping using Haley Knott regression method. Line color designates year, and the dotted line represents the LOD permutation threshold. b) LOD scores for chromosomes 4 and 8 by composite interval mapping. c) LOD profiles generated by the stepwise procedure for significant QTLs in each experiment. The genetic positions of loci are annotated above each peak. Figure 9: Fruit length (FLn) QTL mapping. a) Genome-wide LOD scores by standard interval mapping using Haley Knott regression method. Line color designates year, and the dotted line represents the LOD permutation threshold. b) LOD scores for chromosomes 4, 8 and 9 by composite interval mapping. c) LOD profiles generated by the stepwise procedure for significant QTLs in each experiment. The genetic positions of loci are annotated above each peak. Figure 10: Fruit width (FWd) QTL mapping. a) Genome-wide LOD scores by standard interval mapping using Haley Knott regression method. Line color designates year, and the dotted line represents the LOD permutation threshold. b) LOD scores for chromosomes 3, 4, 8 and 12 by composite interval mapping. c) LOD profiles generated by the stepwise procedure for significant QTLs in each experiment. The genetic positions of loci are annotated above each peak. Figure 11: Fruit shape index QTL mapping. a) LOD profiles generated by the stepwise procedure for significant QTLs in each experiment. The genetic positions of loci are annotated above each peak. b) Transgressive segregation for fruit shape. Lines are ranked based from low to high based on their FSI. All the RILs above or below the dashed lines are significantly more elongated or flat than both parents, based on Student’s t test (P < 0.05). Figure 12: Fruit shape index epistatic interaction between FSI1.1 and FSI12.1, across 3 years. Haplotype means not connected by the same letter are significantly different at P < 0.05. Figure 13: Netting density QTL mapping. a) Genome-wide LOD scores by standard interval mapping using Haley Knott regression method. Line color designates year, and the dotted line represents the LOD permutation threshold. b) LOD scores for the two QTLs on chromosome 2 by composite interval mapping. c) LOD profiles generated by the stepwise procedure for significant QTLs in each experiment. The genetic positions of loci are annotated above each peak. Figure 14: Netting density two-way LS means plot of NDEN2.2 and NDEN9.1 across 3 years. Haplotype means not connected by the same letter are significantly different at P < 0.05. (PDF 335 kb)

Supplementary material 2 (PDF 1375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oren, E., Tzuri, G., Dafna, A. et al. High-density NGS-based map construction and genetic dissection of fruit shape and rind netting in Cucumis melo. Theor Appl Genet 133, 1927–1945 (2020). https://doi.org/10.1007/s00122-020-03567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-020-03567-3

Navigation