Skip to main content

Advertisement

Log in

Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Growing environment dramatically influences melon (Cucumis melo L.; 2n = 2x = 24) fruit development and quality. Consequently, the characterization of quantitative trait loci (QTL) controlling melon fruit quality for application in marker-assisted selection (MAS) requires an assessment of genotype by environmental interactions, trait correlations, and QTL efficacy. Therefore, fruit quality traits [soluble solids content (SSC), mesocarp pressure (MP), fruit diameter (mesocarp + exocarp; FD), seed cavity diameter (endocarp; SCD), seed cavity to FD ratio (C:D), fruit shape (FS), and percentage of exocarp netting (PN) at time of harvest] were examined in 81 recombinant inbred lines (RIL) at two growing locations (California. and Wisconsin, USA) to identify the map position and consistency of QTL for MAS in a Group Cantalupensis U.S. Western Shipping market type background. RIL developed from a cross between U.S. Department of Agriculture line USDA-846-1 and ‘Top Mark’ were used to identify 57 QTL in both location tested (SSC = 10, MP = 8, FD = 6, SCD = 9, C:D = 8, PN = 6, and FS = 10). The QTL were distributed across 12 linkage groups and explained a significant portion of the associated phenotypic variation (R 2 = 4–29%). Twelve of such QTL were consistently identified in the two locations tested [SSC (ssc7.4 and ssc10.8), MP (mp7.2, mp10.3, and mplg7.5), SCD (scd1.1, scd5.4, and scd8.5), C:D (cd2.1), and PN (pn2.1), FS (fs1.1 and fs2.3)]. The map positions of 18 QTL (FS = 7, SSC = 6, C:D = 3, SCD = 1, and PN = 1) were in equivalent (i.e., collinear) genomic regions with previous studies in Group Inodorus-based maps. Six of the collinear QTL were detected in both locations in our study (ssc7.4, ssc10.8, fs1.1, fs2.3, pn2.1, and scd5.4). The collinearity of these QTL with those identified in other maps, and their consistency across diverse growing environments portends their broad applicability in melon MAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BLUPs:

Best linear unbiased predictions

BLUEs:

Best linear unbiased estimations

FD:

Fruit diameter

FS:

Fruit shape

MP:

Mesocarp pressure

PN:

Percent netting at full-slip

C:D:

SCD:FD ratio

SCD:

Seed cell diameter

SSC:

Soluble solids content

References

  • Baudracco-Arnas S, Pitrat M (1996) A genetic map of melon (Cucumis melo L) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor Appl Genet 93:57–64

    Article  CAS  Google Scholar 

  • Beavis WD (1998) QTL analysis: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, FL, pp 145–162

    Google Scholar 

  • Bernardo R (1996) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Reis N, Baudracco-Arnas S, Pitrat M, Staub JE, Oliver M, Arus P, de Vincente CM, Katzir N (2000) Simple sequence repeats in Cucumis mapping and map merging. Genome 43:963–974

    Article  PubMed  CAS  Google Scholar 

  • Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N (2002) Construction of a genetic map of melon with molecular markers and horticultural traits, and localization of genes associated with ZYMV resistance. Euphytica 125:373–384

    Article  CAS  Google Scholar 

  • de Leon N, Coors JG, Kaeppler SM, Rosa GJM (2005) Genetic control of prolificacy and related traits in the golden glow maize population: I phenotypic evaluation. Crop Sci 45:1361–1369

    Google Scholar 

  • Dogimont C, Leconte L, Périn C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTLs contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. Acta Hortic 510:391–398

    CAS  Google Scholar 

  • Eduardo I, Arus P, Montforte AJ, Martinez JA, Alarcon AL, Alvarez JM, Knapp E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89

    Google Scholar 

  • Falconer DS, Mackay TF (1996) Introduction to quantitative genetics, 4th edn edn. Longman Group, London, UK

    Google Scholar 

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P, Monforte AJ (2005) Development of a consensus map of melon (Cucumis melo L) based on high-quality markers (RFLPs and SSRs) using F2 and double-haploid line populations. Theor Appl Genet 110:802–811

    Article  PubMed  CAS  Google Scholar 

  • Kalb TJ, Davis DW (1984) Evaluation of combining ability, heterosis, and genetic variance for fruit quality characteristics in bush muskmelon. J Am Soc Hortic Sci 109:411–415

    Google Scholar 

  • Katzir N, Danin-Poleg T, Tzuri G, Karchi Z, Lavi U, Cregan PB (1996) Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor Appl Genet 93:1282–1290

    Article  CAS  Google Scholar 

  • Kubicki B (1962) Inheritance of some characters in muskmelon (Cucumis melo L). Genet Pol 3:265–274

    Google Scholar 

  • Lippert LF, Legg PD (1972) Appearance and quality characters in muskmelon fruit evaluated by ten-cultivar diallel cross. J Am Soc Hortic Sci 97:84–87

    Google Scholar 

  • Lippert LF, Hall MO (1982) Hertiabilities and correlations in muskmelon from parent offspring regression analyses. J Am Soc Hortic Sci 107:217–221

    Google Scholar 

  • Littell RC, Milliken GA, Stroup WW, WolWnger RD (1996) SAS system for mixed models. SAS Institute Inc., Cary, NC

  • McCreight JD, Nerson H, Grumet R (1993) Melon, Cucumis melo L. In: Kallos G, Bergh BO (eds). Genetic improvement of vegetable crops. Pergamon Press, New York

  • Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arus P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L). Theor Appl Genet 108:750–758

    Article  PubMed  CAS  Google Scholar 

  • Obando J, Fernandez-Trujillo JP, Martinez AL, Alarcon AL, Eduardo I, Arus P, Monforte J (2008) Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J Am Soc Hortic Sci 133:139–151

    Google Scholar 

  • Oliver M, Garcia-Mas J, Cardus M, Puedo N, Lopez-Sese A, Arroyo M, Gomez-Paniagua H, Arus P, de Vincente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  PubMed  CAS  Google Scholar 

  • Paris M, Staub JE, McCreight J (2003) Determination of fruit sampling location for quality measurements in melon (Cucumis melo L). Cucurbit Genet Coop Rpt 26:12–17

    Google Scholar 

  • Perchepied L, Dogimont C, Pitrat M (2005a) Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp melon race 1.2 in a recombinant inbred line population of melon. Theor Appl Genet 111:65–74

    Article  PubMed  CAS  Google Scholar 

  • Perchepied L, Dogimont C, Pitrat M (2005b) Relationship between loci conferring downy and powderly mildew resistance in melon assessed by quantitative trait loci mapping. Phytopathology 95:556–565

    Article  CAS  Google Scholar 

  • Perin C, Dogimont C, Giovanazzo N, Besombes D, Guitton L, Haggen L, Pitrat M (1999) Genetic control and linkages of some fruit characters in melon. Cucurbit Genet Coop Rpt 22:16–18

    Google Scholar 

  • Perin C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002a) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L). Mol Genet Genom 266:933–941

    Article  CAS  Google Scholar 

  • Perin C, Gomez-Jimenez M, Hagen L, Dogimont C, Pech JC, Latche A, Pitrat M, Lelievre JM (2002b) Molecular and genetic characterization of a non-climacteric phenotype in melon reveals two loci conferring altered ethylene response in fruit. Plant Physiol 129:300–309

    Article  PubMed  CAS  Google Scholar 

  • Perin C, Hagen LS, de Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002c) A reference map of Cucumis melo based on two recombinant inbred line populations. Theor Appl Genet 104:1017–1034

    Article  PubMed  CAS  Google Scholar 

  • Pitrat M (2002) Melon gene list for melon. Curcubit Genet Coop Rpt 25:76–93

    Google Scholar 

  • SAS Institute (1999) SAS version 8.02 for windows. SAS Institute Inc Cary, NY

    Google Scholar 

  • Silberstein L, Kovalski I, Brotman Y, Perin C, Dogimont C, Pitrat M, Klingler J, Thompson G, Portnoy V, Katzir N, Perl- Treves R (2003) Linkage map of Cucumis melo including phenotypic traits and sequence-characterized genes. Genome 46:761–773

    Article  PubMed  CAS  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332

    Article  CAS  Google Scholar 

  • Wang YH, Thomas CE, Dean RA (1997) A genetic map of melon (Cucumis melo L) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95:791–798

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2001–2004) Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Yan W, Rajcan I (2003) Prediction of cultivar performance based on single- versus multiple- year tests in soybean. Crop Sci 43:549–555

    Google Scholar 

  • Zalapa (2005) Inheritance and mapping of plant architecture and fruit yield in melon (Cucumis melo L). PhD Dissertation, University of Wisconsin, Madison

  • Zalapa JE, Staub JE, McCreight JD (2006) Generation means analysis of plant architectural traits and fruit yield in melon. Plant Breed 125:482–487

    Article  Google Scholar 

  • Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan E. Zalapa.

Additional information

Miriam K. Paris, Juan E. Zalapa contributed equally to the work described in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paris, M.K., Zalapa, J.E., McCreight, J.D. et al. Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breeding 22, 405–419 (2008). https://doi.org/10.1007/s11032-008-9185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9185-3

Keywords

Navigation