Skip to main content
Log in

Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

High-throughput SNP array analysis of pooled extreme phenotypes in a segregating population by KASP marker genotyping permitted rapid, cost-effective location of a stripe rust resistance QTL in wheat.

Abstract

German wheat cultivar “Friedrichswerther” has exhibited high levels of adult plant resistance (APR) to stripe rust in field environments for many years. F2:3 lines and F6 recombinant inbred line (RILs) populations derived from a cross between Friedrichswerther and susceptible landrace Mingxian 169 were evaluated in the field in 2013, 2016 and 2017. Illumina 90K iSelect SNP arrays were used to genotype bulked extreme pools and parents; 286 of 1135 polymorphic SNPs were identified on chromosome 6B. Kompetitive Allele-Specific PCR (KASP) markers were used to verify the chromosome region associated with the resistance locus. A linkage map was constructed with 18 KASP-SNP markers, and a major effect QTL was identified within a 1.4 cM interval flanked by KASP markers IWB71602 and IWB55937 in the region 6BL3-0-0.36. The QTL, named QYr.nwafu-6BL, was stable across environments, and explained average 54.4 and 47.8% of the total phenotypic variation in F2:3 lines and F6 RILs, respectively. On the basis of marker genotypes, pedigree analysis and relative genetic distance QYr.nwafu-6BL is likely to be a new APR QTL. Combined high-throughput SNP array genotyping of pooled extremes and validation by KASP assays lowers sequencing costs compared to genome-wide association studies with SNP arrays, and more importantly, permits rapid isolation of major effect QTL in hexaploid wheat as well as improving accuracy of mapping in the QTL region. QYr.nwafu-6BL with flanking KASP markers developed and verified in a subset of 236 diverse lines can be used in marker-assisted selection to improve stripe rust resistance in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Avni R, Nave M, Barad O, Baruch K, Twardziok SO et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357:93–97

    Article  CAS  PubMed  Google Scholar 

  • Bai B, Ren Y, Xia XC, Du JY, Zhou G et al (2012) Mapping of quantitative trait loci for adult plant resistance to stripe rust in German wheat cultivar Ibis. J Integr Agric 11:528–536

    Article  CAS  Google Scholar 

  • Bariana HS, Bansal UK, Schmidt A, Lehmensiek A, Kaur J et al (2010) Molecular mapping of adult plant stripe rust resistance in wheat and identification of pyramided QTL genotypes. Euphytica 176:251–260

    Article  CAS  Google Scholar 

  • Basnet BR, Ibrahim AMH, Chen XM, Singh RP, Mason ER et al (2014a) Molecular mapping of stripe rust resistance in hard red winter wheat TAM 111 adapted to the U.S. high plains. Crop Sci 54:1361–1373

    Article  Google Scholar 

  • Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J et al (2014b) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 33:385–399

    Article  CAS  Google Scholar 

  • Brown JK (2015) Durable resistance of crops to disease: a Darwinian perspective. Annu Rev Phytopathol 53:513–539

    Article  CAS  PubMed  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulli P, Zhang JL, Chao SM, Chen XM, Pumphrey M (2016) Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3 6:2237–2253

    Article  PubMed  PubMed Central  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust. Am J Plant Sci 04:608–627

    Article  Google Scholar 

  • Chen XM (2014) Integration of cultivar resistance and fungicide application for control of wheat stripe rust. Can J Plant Pathol 36:311–326

    Article  CAS  Google Scholar 

  • Chen XM, Line RF (1995) Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology 85:573–578

    Article  Google Scholar 

  • Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL et al (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101

    Article  Google Scholar 

  • Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112:581–591

    Article  CAS  PubMed  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M et al (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973

    Article  CAS  PubMed  Google Scholar 

  • Dong ZZ, Hegarty JM, Zhang JL, Zhang WJ, Chao SM et al (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor Appl Genet. doi:10.1007/s00122-017-2946-9

    PubMed Central  Google Scholar 

  • Doussinault G, Dosba F (1981) Analyse monosomique de la résistance a la rouille jaune du géniteur blé tendre VPM 1. Comptes rendus des seances de l’Academie d’agriculture de France, pp 133–138

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:1–13

    Article  Google Scholar 

  • Feng J, Chen G, Wei Y, Liu Y, Jiang Q et al (2015) Identification and mapping stripe rust resistance gene YrLM168a using extreme individuals and recessive phenotype class in a complicated genetic background. Mol Genet Genom 290:2271–2278

    Article  CAS  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L et al (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Turner MK, Chao S, Kolmer J, Anderson JA (2016) Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS One 11:e148671

    Google Scholar 

  • Han DJ, Wang QL, Zhang L, Wei GR, Zeng QD et al (2010) Evaluation of resistance of current wheat cultivars to stripe rust in Northwest China, North China and the Middle and Lower Reaches of Changjiang River epidemic area. Sci Agric Sin 43:2889–2896

    Google Scholar 

  • Han DJ, Zhang PY, Wang QL, Zeng QD, Wu JH et al (2012) Identification and evaluation of resistance to stripe rust in 1980 wheat landraces and abroad germplasm. Sci Agric Sin 45:5013–5023

    CAS  Google Scholar 

  • Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH et al (2015) Emerging Yr26-virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin, China. Plant Dis 99:754–760

    Article  Google Scholar 

  • Hou L, Chen X, Wang M, See DR, Chao S et al (2015) Mapping a large number of QTL for durable resistance to stripe rust in winter wheat Druchamp using SSR and SNP markers. PLoS One 10:e0126794

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou L, Jia J, Zhang X, Li X, Yang Z et al (2016) Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis 100:1717–1724

    Article  CAS  Google Scholar 

  • Hovmøller MS, Walter S, Justesen AF (2010) Escalating threat of wheat rusts. Science 329:369

    Article  PubMed  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Keller B (2016) Molecular genetics and evolution of disease resistance in cereals. New Phytol 212:320–332

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Lan C, Liang S, Zhou X, Zhou G, Lu Q et al (2010) Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology 100:313–318

    Article  PubMed  Google Scholar 

  • Li ZQ, Zeng SM (2002) Wheat rust in China. China Agriculture Press, Beijing

    Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968–1987. US Department of Agriculture Technical Bulletin No. 1788, p 74

  • Liu JD, He ZH, Wu L, Bai B, Wen WE et al (2015) Genome-wide linkage mapping of QTL for adult-plant resistance to stripe rust in a Chinese wheat population Linmai 2 × Zhong 892. PLoS One 10:e145462

    Google Scholar 

  • Liu W, Maccaferri M, Bulli P, Rynearson S, Tuberosa R et al (2017) Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f. sp. tritici in elite durum wheat. Theor Appl Genet 130:649–667

    Article  PubMed  Google Scholar 

  • Lu Y, Wang M, Chen X, See D, Chao S et al (2014) Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet 127:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S et al (2015) A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 5:449–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    Article  CAS  Google Scholar 

  • McIntosh RA, Wellings CW, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne, pp 20–26

    Book  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R et al (2016) Catalogue of gene symbols for wheat: 2015–2016 Supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2015.pdf

  • McIntosh RA, Dubcovsky J, Rogers J, Morris C, Appels R et al. (2017) Catalogue of gene symbols for wheat: 2017 Supplement. https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan CX, Schnippenkoetter W, Ayliffe M et al (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Niks RE, Qi X, Marcel TC (2015) Quantitative resistance to biotrophic filamentous plant pathogens: concepts, misconceptions, and mechanisms. Annu Rev Phytopathol 53:445–470

    Article  CAS  PubMed  Google Scholar 

  • Periyannan S, Milne RJ, Figueroa M, Lagudah ES, Dodds PN (2017) An overview of genetic rust resistance: from broad to specific mechanisms. PLoS Pathog 13:e1006380

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res Sect C26:496–500

    Article  Google Scholar 

  • Prins R, Pretorius ZA, Bender CM, Lehmensiek A (2011) QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breed 27:259–270

    Article  Google Scholar 

  • Ramirez-Gonzalez RH, Segovia V, Bird N, Fenwick P, Holdgate S et al (2015a) RNA-Seq bulked segregant analysis enables the identification of high-resolution genetic markers for breeding in hexaploid wheat. Plant Biotechnol J 13:613–624

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015b) PolyMarker: a fast polyploid primer design pipeline. Bioinformatics 31:2038–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasheed A, Wen W, Gao F, Zhai S, Jin H et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, Xia X, Khan A, Xu Y et al (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, He Z, Li J, Lillemo M, Wu L et al (2012a) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221

    Article  PubMed  Google Scholar 

  • Ren Y, Li Z, He Z, Wu L, Bai B, Lan C, Wang C, Zhou G, Zhu H, Xia X (2012b) QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet 125:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX et al (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126:2427–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14

    Article  CAS  Google Scholar 

  • Sharma-Poudyal D, Chen XM, Wan AM, Zhan GM, Kang ZS et al (2013) Virulence characterization of international collections of the wheat stripe rust pathogen, Puccinia striiformis f. sp. tritici. Plant Dis 97:379–386

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D et al (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Song WN, Ko L, Henry RJ (1994) Polymorphisms in the α-amy1 gene of wild and cultivated barley revealed by the polymerase chain reaction. Theor Appl Genet 89:509–513

    Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G et al (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom 4:12–25

    Article  CAS  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Sun ZQ, Li HH, Zhang LY, Wang JK (2013) Properties of the test statistic under null hypothesis and the calculation of LOD threshold in quantitative trait loci (QTL) mapping. Acta Agron Sin 39:1–11

    Article  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Thind AK, Wicker T, Šimková H, Fossati D, Moullet O et al (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol. doi:10.1038/nbt.3877

    PubMed  Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan I, Jackson L et al (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap4, software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12(6):e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang JK (2009) Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin 35:239–245

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Wang S, Xia G (2015) From genome to gene: a new epoch for wheat research? Trends Plant Sci 20:380–387

    Article  PubMed  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  PubMed  Google Scholar 

  • Wu JH, Wang QL, Chen XM, Wang MJ, Mu JM et al (2016) Stripe rust resistance in wheat breeding lines developed for central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Can J Plant Pathol 38:317–324

    Article  CAS  Google Scholar 

  • Wu JH, Wang QL, Liu SJ, Huang S, Mu JM et al (2017a) Saturation mapping of a major effect QTL for stripe rust resistance on wheat chromosome 2B in cultivar Napo 63 using SNP genotyping arrays. Front Plant Sci 8:653

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu JH, Wang QL, Xu LS, Chen XM, Li B et al (2017b) Combining SNP genotyping array with bulked segregant analysis to map a gene controlling adult-plant resistance to stripe rust in wheat line 03031-1-5 H62. Phytopathology. doi:10.1094/PHYTO-04-17-0153-R

    Google Scholar 

  • Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH et al (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li C, Lam HM, Clements J, Yan G et al (2015) Sequencing consolidates molecular markers with plant breeding practice. Theor Appl Genet 128:779–795

    Article  CAS  PubMed  Google Scholar 

  • Zeng QD, Han DJ, Wang QL, Yuan FP, Wu JH et al (2014) Stripe rust resistance and genes in Chinese wheat cultivars and breeding lines. Euphytica 196:271–284

    Article  CAS  Google Scholar 

  • Zeng QD, Shen C, Yuan FP, Wang QL, Wu JH et al (2015) The resistance evaluation of the Yr genes to the main prevalent pathotypes of Puccinia striiformis f. sp. tritici in China. Acta Phytopathol Sin 45:641–650

    Google Scholar 

  • Zeven AC, Zeven-Hissink NC (1976) Genealogies of 14000 wheat varieties. The Netherlands Cereal Centre, Wageningen

    Google Scholar 

  • Zhou XL, Han DJ, Chen XM, Gou HL, Guo SJ et al (2014) Characterization and molecular mapping of stripe rust resistance gene Yr61 in winter wheat cultivar Pindong 34. Theor Appl Genet 127:2349–2358

    Article  CAS  PubMed  Google Scholar 

  • Zhou XL, Zhan GM, Huang LL, Han DJ, Kang ZS (2015) Evaluation of resistance to stripe rust in eighty abroad spring wheat germplasms. Sci Agric Sin 8:1518–1526

    Google Scholar 

  • Zou C, Wang P, Xu Y (2016) Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol J 14:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, for critical review of this manuscript. This study was financially supported by the National Basic Research Program of China (No. 2013CB127700), the National Key Research and Development Program of China (Grant No. 2016YFE0108600), the earmarked fund for Modern Agro-industry Technology Research System (No. CARS-3-1-11) and National Natural Science Foundation of China (31371924).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dejun Han or Zhensheng Kang.

Ethics declarations

Conflict of interest

The authors have declared that no competing interests exist.

Ethical standards

I declare on behalf of my co-authors that the work described is original, previously unpublished research, and not under consideration for publication elsewhere. The experiments in this study comply with the current laws of China.

Additional information

Communicated by Jorge Dubcovsky.

Electronic supplementary material

Below is the link to the electronic supplementary material.

122_2017_2984_MOESM1_ESM.pptx

Fig. S1 Seedling reactions and adult plant responses produced by FRIED when infected with 7 Pst races in greenhouse. CYR29, CYR31, CYR32, CYR33, Su11-7 and V26/CH42 were tested in our previous study (Han et al. 2012). CYR34 was tested in this study (PPTX 4332 kb)

122_2017_2984_MOESM2_ESM.pptx

Fig. S2 Genotypic plots from selected KASP assays. The X- and Y-axes indicate FAM- and HEX-fluorescence units, respectively. The central cluster (green) is comprised of heterozygous individuals, whereas clusters near the axes are homozygous for either MX169 (HEX; red) or FRIED (FAM; blue) alleles. Black dots in the lower left indicate a water control (non-template control, NTC) and pink dots represent missing or failed data. (A, B) Marker IWB11702 and IWB5932 results for the F2 population, each showing three clusters. (C, D, E) IWA3289 and IWB55937 results for the F6 population showing two major clusters. (F, G, H, I) Results of genotyping with IWA1839, IWB71602, IWA4501 and IWB60085 in 236 diverse cultivars and landraces, each showing two main clusters (PPTX 1031 kb)

Supplementary material 3 (XLSX 229 kb)

Supplementary material 4 (XLSX 11 kb)

Supplementary material 5 (XLSX 38 kb)

Supplementary material 6 (XLSX 30 kb)

Supplementary material 7 (XLSX 26 kb)

Supplementary material 8 (XLSX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, S., Wang, Q. et al. Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet 131, 43–58 (2018). https://doi.org/10.1007/s00122-017-2984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-2984-3

Navigation