Skip to main content
Log in

A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We suggest multi-parental nested association mapping as a valuable innovation in barley genetics, which increases the power to map quantitative trait loci and assists in extending genetic diversity of the elite barley gene pool.

Abstract

Plant genetic resources are a key asset to further improve crop species. The nested association mapping (NAM) approach was introduced to identify favorable genes in multi-parental populations. Here, we report toward the development of the first explorative barley NAM population and demonstrate its usefulness in a study on mapping quantitative trait loci (QTLs) for leaf rust resistance. The NAM population HEB-5 was developed from crossing and backcrossing five exotic barley donors with the elite barley cultivar ‘Barke,’ resulting in 295 NAM lines in generation BC1S1. HEB-5 was genetically characterized with 1,536 barley SNPs. Across HEB-5 and within the NAM families, no deviation from the expected genotype and allele frequencies was detected. Genetic similarity between ‘Barke’ and the NAM families ranged from 78.6 to 83.1 %, confirming the backcrossing step during population development. To explore its usefulness, a screen for leaf rust (Puccinia hordei) seedling resistance was conducted. Resistance QTLs were mapped to six barley chromosomes, applying a mixed model genome-wide association study. In total, four leaf rust QTLs were detected across HEB-5 and four QTLs within family HEB-F23. Favorable exotic QTL alleles reduced leaf rust symptoms on two chromosomes by 33.3 and 36.2 %, respectively. The located QTLs may represent new resistance loci or correspond to new alleles of known resistance genes. We conclude that the exploratory population HEB-5 can be applied to mapping and utilizing exotic QTL alleles of agronomic importance. The NAM concept will foster the evaluation of the genetic diversity, which is present in our primary barley gene pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backes G, Madsen L, Jaiser H, Stougaard J, Herz M, Mohler V, Jahoor A (2003) Localisation of genes for resistance against Blumeria graminis f.sp hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp. spontaneum) line. Theor Appl Genet 106:353–362

    CAS  PubMed  Google Scholar 

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  CAS  PubMed  Google Scholar 

  • Beavis WB (1998) QTL analyses: power, precision, and accuracy. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162

    Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300

    Google Scholar 

  • Bernardo L, Prinsi B, Negri AS, Cattivelli L, Espen L, Valè G (2012) Proteomic characterization of the Rph15 barley resistance gene-mediated defence responses to leaf rust. BMC Genom 13:642

    Article  CAS  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, Ersoz E, Flint-Garcia S, Garcia A, Glaubitz JC, Goodman MM, Harjes C, Guill K, Kroon DE, Larsson S, Lepak NK, Li HH, Mitchell SE, Pressoir G, Peiffer JA, Rosas MO, Rocheford TR, Romay MC, Romero S, Salvo S, Villeda HS, da Silva HS, Sun Q, Tian F, Upadyayula N, Ware D, Yates H, Yu JM, Zhang ZW, Kresovich S, McMullen MD (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  CAS  PubMed  Google Scholar 

  • Butrón A, Chen YC, Rottinghaus GE, McMullen MD (2010) Genetic variation at bx1 controls DIMBOA content in maize. Theor Appl Genet 120:721–734

    Article  PubMed  Google Scholar 

  • Cakir M, Gupta S, Li CD, Hayden M, Mather DE, Ablett GA, Platz GJ, Broughton S, Chalmers KJ, Loughman R, Jones MGK, Lance RCM (2011) Genetic mapping and QTL analysis of disease resistance traits in the barley population Baudin × AC Metcalfe. Crop Pasture Sci 62:152–161

    Article  Google Scholar 

  • Castro AJ, Gamba F, German S, Gonzalez S, Hayes PM, Pereyra S, Perez C (2012) Quantitative trait locus analysis of spot blotch and leaf rust resistance in the BCD47 × Baronesse barley mapping population. Plant Breed 131:258–266

    Article  CAS  Google Scholar 

  • Chełkowski J, Tyrka M, Sobkiewicz A (2003) Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 44:291–309

    PubMed  Google Scholar 

  • Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I, Morris J, Ramsay L, Marshall D, Cardle L, Waugh R (2010a) An eQTL analysis of partial resistance to Puccinia hordei in Barley. PLoS ONE 5:e8598

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X, Niks R, Hedley P, Morris J, Druka A, Marcel T, Vels A, Waugh R (2010b) Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genom 11:629

    Article  Google Scholar 

  • Chen X, Hedley P, Morris J, Liu H, Niks R, Waugh R (2011) Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization. Theor Appl Genet 122:1375–1383

    Article  PubMed Central  PubMed  Google Scholar 

  • Chutimanitsakun Y, Nipper R, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson E, Hayes P (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genom 12:4

    Article  CAS  Google Scholar 

  • Close T, Bhat P, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson J, Wanamaker S, Bozdag S, Roose M, Moscou M, Chao S, Varshney R, Szűcs P, Sato K, Hayes P, Matthews D, Kleinhofs A, Muehlbauer G, DeYoung J, Marshall D, Madishetty K, Fenton R, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D, Hedley P, Tondelli A, Pecchioni N, Francia E, Korzun V, Walther A, Waugh R (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Dreiseitl A, Steffenson BJ (2000) Postulation of leaf-rust resistance genes in Czech and Slovak barley cultivars and breeding lines. Plant Breed 119:211–214

    Article  CAS  Google Scholar 

  • Golegaonkar P, Karaoglu H, Park R (2009a) Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288

    Article  CAS  PubMed  Google Scholar 

  • Golegaonkar PG, Singh D, Park RF (2009b) Evaluation of seedling and adult plant resistance to Puccinia hordei in barley. Euphytica 166:183–197

    Article  CAS  Google Scholar 

  • González AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS ONE 5:e10495

    Article  PubMed Central  PubMed  Google Scholar 

  • González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086–1093

    Article  PubMed  Google Scholar 

  • Heslot N, Rutkoski J, Poland J, Jannink J-L, Sorrells ME (2013) Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS ONE 8:e74612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Arief VN, German S, Fletcher S, Park RF, Singh D, Pereyra S, Franckowiak J (2011) Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley. Theor Appl Genet 123:55–68

    Article  CAS  PubMed  Google Scholar 

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Franckowiak J (2012) Origin of leaf rust adult plant resistance gene Rph20 in barley. Genome 55:396–399

    Article  CAS  PubMed  Google Scholar 

  • Ivandic V, Walther U, Graner A (1998) Molecular mapping of a new gene in wild barley conferring complete resistance to leaf rust (Puccinia hordei Otth). Theor Appl Genet 97:1235–1239

    Article  CAS  Google Scholar 

  • Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant Microbe In 19:1270–1279

    Article  CAS  Google Scholar 

  • Jafary H, Albertazzi G, Marcel TC, Niks RE (2008) High diversity of genes for nonhost resistance of barley to heterologous rust fungi. Genetics 178:2327–2339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457

    Article  Google Scholar 

  • Kicherer S, Backes G, Walther U, Jahoor A (2000) Localising QTLs for leaf rust resistance and agronomic traits in barley (Hordeum vulgare L.). Theor Appl Genet 100:881–888

    Article  CAS  Google Scholar 

  • König J, Kopahnke D, Steffenson BJ, Przulj N, Romeis T, Röder MS, Ordon F, Perovic D (2012) Genetic mapping of a leaf rust resistance gene in the former Yugoslavian barley landrace MBR1012. Mol Breed 30:1253–1264

    Article  Google Scholar 

  • Kopahnke D, Nachtigall M, Ordon F, Steffenson B (2004) Evaluation and mapping of a leaf rust resistance gene derived from Hordeum vulgare subsp. spontaneum. Czech J Genet Plant Breed 40:86–90

    Google Scholar 

  • Kraakman ATW, Martínez F, Mussiraliev B, van Eeuwijk FA, Niks RE (2006) Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Mol Breed 17:41–58

    Article  CAS  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ, Buckler ES, Belcher AR, Oropeza-Rosas MA, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–168

    Article  CAS  PubMed  Google Scholar 

  • Larsson SJ, Lipka AE, Buckler ES (2013) Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet 9:e1003246

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levine MN, Cherewick WJ (1952) Studies on dwarf leaf rust of Barley. US Dept Agric Technol Bull 1056:1–17

    Google Scholar 

  • Li HH, Bradbury P, Ersoz E, Buckler ES, Wang JK (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS One 6:e17573

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mace E, Xia L, Jordan D, Halloran K, Parh D, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9:26

    Article  Google Scholar 

  • Mace ES, Singh V, Van Oosterom EJ, Hammer GL, Hunt CH, Jordan DR (2012) QTL for nodal root angle in sorghum (Sorghum bicolor L. Moench) co-locate with QTL for traits associated with drought adaptation. Theor Appl Genet 124:97–109

    Article  CAS  PubMed  Google Scholar 

  • Mace ES, Hunt CH, Jordan DR (2013) Supermodels: sorghum and maize provide mutual insight into the genetics of flowering time. Theor Appl Genet 126:1377–1395

    Article  CAS  PubMed  Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Marcel T, Varshney R, Barbieri M, Jafary H, de Kock M, Graner A, Niks R (2007a) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues Theor Appl Genet 114:487–500

    CAS  Google Scholar 

  • Marcel TC, Aghnoum R, Durand J, Varshney RK, Niks RE (2007b) Dissection of the Barley 2L1.0 region carrying the ‘Laevigatum’ quantitative resistance gene to leaf rust using near-isogenic lines (NIL) and subNIL. Mol Plant Microbe In 20:1604–1615

    Article  CAS  Google Scholar 

  • Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M, Akhunov ED, Hedley PE, Gonzales AM, Morrell PL, Kilian B, Blattner FR, Scholz U, Mayer KFX, Flavell AJ, Muehlbauer GJ, Waugh R, Jeddeloh JA, Stein N (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76:494–505

    Article  CAS  PubMed  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Rosas MO, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Millett BP, Xiong YW, Dahl SK, Steffenson BJ, Muehlbauer GJ (2009) Wild barley accumulates distinct sets of transcripts in response to pathogens of different trophic lifestyles. Physiol Mol Plant P 74:91–98

    Article  CAS  Google Scholar 

  • Moragues M, Comadran J, Waugh R, Milne I, Flavell AJ, Russell JR (2010) Effects of ascertainment bias and marker number on estimations of barley diversity from high-throughput SNP genotype data. Theor Appl Genet 120:1525–1534

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Amatriaín M, Moscou MJ, Bhat PR, Svensson JT, Bartoš J, Suchánková P, Šimková H, Endo TR, Fenton RD, Lonardi S, Castillo AM, Chao S, Cistué L, Cuesta-Marcos A, Forrest KL, Hayden MJ, Hayes PM, Horsley RD, Makoto K, Moody D, Sato K, Vallés MP, Wulff BBH, Muehlbauer GJ, Doležel J, Close TJ (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Gen 4:238–249

    Article  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park RF, Karakousis A (2002) Characterization and mapping of gene Rph19 conferring resistance to Puccinia hordei in the cultivar ‘Reka 1’ and several Australian barleys. Plant Breed 121:232–236

    Article  CAS  Google Scholar 

  • Peiffer JA, Flint-Garcia SA, De Leon N, McMullen MD, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS ONE 8:e67066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pickering RA, Steffenson BJ, Hill AM, Borovkova I (1998) Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × Hordeum bulbosum hybrid. Plant Breed 117:83–84

    Article  Google Scholar 

  • Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Gen 5:92–102

    Article  CAS  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–6898

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    Article  CAS  Google Scholar 

  • Qi X, Jiang G, Chen W, Niks RE, Stam P, Lindhout P (1999) Isolate-specific QTLs for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99:877–884

    Article  CAS  Google Scholar 

  • Qi X, Fufa F, Sijtsma D, Niks RE, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Mol Breed 6:1–9

    Article  CAS  Google Scholar 

  • Russell J, Dawson IK, Flavell AJ, Steffenson B, Weltzien E, Booth A, Ceccarelli S, Grando S, Waugh R (2011) Analysis of >1,000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 191:564–578

    Article  PubMed  Google Scholar 

  • Sandhu KS, Forrest KL, Kong S, Bansal UK, Singh D, Hayden MJ, Park RF (2012) Inheritance and molecular mapping of a gene conferring seedling resistance against Puccinia hordei in the barley cultivar Ricardo. Theor Appl Genet 125:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2008) The SAS Enterprise guide for Windows, release 4.2 SAS Institute, Cary

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    Article  PubMed  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the illumina goldengate assay. G3: genes. Genom Genet 1:187–196

    CAS  Google Scholar 

  • Schweizer P, Stein N (2011) Large-scale data integration reveals colocalization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant Microbe In 24:1492–1501

    Article  CAS  Google Scholar 

  • Stich B (2009) Comparison of mating designs for establishing nested association mapping populations in Maize and Arabidopsis thaliana. Genetics 183:1525–1534

    Article  PubMed Central  PubMed  Google Scholar 

  • Stich B, Yu J, Melchinger AE, Piepho H-P, Utz HF, Maurer HP, Buckler ES (2007) Power to detect higher-order epistatic interactions in a metabolic pathway using a new mapping strategy. Genetics 176:563–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stich B, Utz HF, Piepho H-P, Maurer HP, Melchinger AE (2010) Optimum allocation of resources for QTL detection using a nested association mapping strategy in maize. Theor Appl Genet 120:553–561

    Article  PubMed Central  PubMed  Google Scholar 

  • Tabangin ME, Woo JG, Martin LJ (2009) The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc 3(Suppl 7):S41

    Article  PubMed Central  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • The International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  • Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    Article  CAS  PubMed  Google Scholar 

  • Tondelli A, Xu X, Moragues M, Sharma R, Schnaithmann F, Ingvardsen C, Manninen O, Comadran J, Russell J, Waugh R, Schulman AH, Pillen K, Rasmussen SK, Kilian B, Cattivelli L, Thomas WTB, Flavell AJ (2013) Structural and temporal variation in genetic diversity of european spring two-row barley cultivars and association mapping of quantitative traits. Plant Gen 6:1–14

    Article  Google Scholar 

  • Vales M, Schön C, Capettini F, Chen X, Corey A, Mather D, Mundt C, Richardson K, Sandoval-Islas J, Utz H, Hayes P (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • van Berloo R, Aalbers H, Werkman A, Niks RE (2001) Resistance QTL confirmed through development of QTL-NILs for barley leaf rust resistance. Mol Breed 8:187–195

    Article  Google Scholar 

  • von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  Google Scholar 

  • Wang L, Wang Y, Wang Z, Marcel T, Niks R, Qi X (2010) The phenotypic expression of QTLs for partial resistance to barley leaf rust during plant development. Theor Appl Genet 121:857–864

    Article  PubMed  Google Scholar 

  • Wang H, Smith K, Combs E, Blake T, Horsley R, Muehlbauer G (2012) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet 124:111–124

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

    Article  CAS  PubMed  Google Scholar 

  • Weerasena JS, Steffenson BJ, Falk AB (2004) Conversion of an amplified fragment length polymorphism marker into a co-dominant marker in the mapping of the Rph15 gene conferring resistance to barley leaf rust, Puccinia hordei Otth. Theor Appl Genet 108:712–719

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotech 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu JM, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed Central  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zellerhoff N, Himmelbach A, Dong W, Bieri S, Schaffrath U, Schweizer P (2010) Nonhost resistance of barley to different fungal pathogens is associated with largely distinct, quantitative transcriptional responses. Plant Physiol 152:2053–2066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Steve Babben, Eva Geist, Astrid Hoffmann, Bernd Kollmorgen, Andrea Lossow, Merle Noschinski, Dr. Inga Schmalenbach, Brigitte Schröder for crossing and other glasshouse work. We thank Dr. Joseph DeYoung at the Southern California Genotyping Consortium (SCGC), University of California, Los Angeles, CA, for carrying out the Infinium BOPA1 SNP genotyping and Dr. Timothy J. Close and Dr. Prasanna Bhat, University of California, Riverside, CA, for carrying out the SNP genotype calling. Furthermore, we are grateful to Dr. Thomas Bringezu for advice in the laboratory and use of MapChart and Dr. Dragan Perovic for providing the leaf rust transformation scale. We also thank Helga Ansorge for conducting the leaf rust inoculation and screening. This work was funded by the Deutsche Forschungsgemeinschaft (DFG; project Pi339/5-1) as part of the European Research Area in Plant Genomics (ERANET-PG) initiative (project 061).

Conflict of interest

We declare that we have no conflict of interests in regard to the present study.

Ethical standards

We declare that we followed all relevant ethical standards while carrying out the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Pillen.

Additional information

Communicated by P. M. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1041 kb)

Supplementary material 2 (XLSX 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnaithmann, F., Kopahnke, D. & Pillen, K. A first step toward the development of a barley NAM population and its utilization to detect QTLs conferring leaf rust seedling resistance. Theor Appl Genet 127, 1513–1525 (2014). https://doi.org/10.1007/s00122-014-2315-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2315-x

Keywords

Navigation