Skip to main content
Log in

Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is an important disease of soft red winter wheat in the eastern region of the USA. Pioneer 26R61 has provided effective resistance to stripe rust for 10 years. To elucidate the genetic basis of the resistance, a mapping population of 178 recombinant inbred lines (RILs) was developed using single-seed descent from a cross between Pioneer 26R61 and the susceptible cultivar AGS 2000. A genetic map with 895 markers covering all 21 chromosomes was used for QTL analysis. One major QTL was detected, explaining up to 56.0% of the mean phenotypic variation, flanked by markers Xbarc124 and Xgwm359, and assigned to the distal 22% of the short arm of wheat chromosome 2A. Evidence showed that it was different from Yr17 derived from Ae. ventricosa, the only formally named Yr gene in 2AS, and the QTL was temporarily designated as YrR61. In addition, a minor QTL, QYr.uga-6AS, probably conditioned high-temperature adult plant resistance. The QTL explained 6–7% of the trait variation. Preliminary test of the flanking markers for YrR61, in two cultivars and two promising breeding lines with Pioneer 26R61 in their pedigree, indicated that YrR61 was present in these cultivars and lines, and these markers could therefore be used in marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance gene in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  PubMed  CAS  Google Scholar 

  • Bayles RA, Flath K, Hovmøller MS, Vallavieille-Pope C (2000) Breakdown of the Yr17 resistance to yellow rust of wheat in northern Europe. Agronomie 20:805–811

    Article  Google Scholar 

  • Cao Z, Deng Z, Wang M, Wang X, Jing J, Zhang X, Shang H, Li Z (2008) Inheritance and molecular mapping of an alien stripe-rust resistance gene from a wheat—Psathyrostachys huashanica translocation line. Plant Sci 174:544–549

    Article  CAS  Google Scholar 

  • Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinforma 10:595–608

    Article  CAS  Google Scholar 

  • Cheema J, Ellis THN, Dicks J (2010) THREaD mapper studio: a novel, visual web server for the estimation of genetic linkage maps. Nucleic Acids Res 38(Suppl 2):W188–W193

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2007) Challenges and solutions for stripe rust control in the United States. Aust J Agric Res 58:648

    Article  Google Scholar 

  • Chen X, Moore M, Milus EA, Long DL, Line RF, Marshall D, Jackson L (2002) Wheat stripe rust epidemics and races of Puccinia striiformis f. sp. tritici in the United States in 2000. Plant Dis 86:39–46

    Article  Google Scholar 

  • Chen X, Penman L, Wan A, Cheng P (2010) Virulence races of Puccinia striiformis f. sp. tritici in 2006 and 2007 and development of wheat stripe rust and distributions, dynamics, and evolutionary relationships of races from 2000 to 2007 in the United States. Can J Plant Pathol 32:315–333

    Article  Google Scholar 

  • Doussinault G, Dosba F, Jahier J (1988) Use of a hybrid between Triticum aestivum L. and Aegilops ventricosa Tausch in wheat breeding. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp. Institute of Plant Science Research, Cambridge, pp 253–258

    Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  PubMed  CAS  Google Scholar 

  • Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H (2008) Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 117:1205–1212

    Article  PubMed  CAS  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • Jahier J, Abelard P, Tanguy AM, Dedryver F, Rivoal R, Khatkar S, Bariana HS (2001) The Aegilops ventricosa segment on chromosome 2AS of the wheat cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant Breed 120:125–128

    Article  CAS  Google Scholar 

  • Johnson JW, Barnett RD, Cunfer BM, Buntin GD, Bland DE (2002) Registration of ‘AGS 2000’ wheat. Crop Sci 42:661

    Article  Google Scholar 

  • Johnson J, Buck J, Marshall D, Miranda L, Martinez A (2008) Stripe rust resistance in soft red winter wheat cultivars and lines. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proc 11th Int Wheat Genet Symp, Sydney University Press, Sydney

  • Kolmer JA (2010) Genetics of leaf rust resistance in the soft red winter wheat cultivars Coker 9663 and Pioneer 26R61. Plant Dis 94:628–632

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lin F, Chen XM (2009) Quantitative trait loci for non-race-specific, high-temperature adult-plant resistance to stripe rust in wheat cultivar express. Theor Appl Genet 118:631–642

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MAPMAKER/Exp version 3.0. A tutorial reference manual, 3rd edn. Whitehead Institute for Medical Research, Cambridge

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  PubMed  CAS  Google Scholar 

  • Line RF, Chen XM (1995) Successes in breeding for and managing durable resistance to wheat rusts. Plant Dis 79:1254–1255

    Google Scholar 

  • Maia N (1967) Obtaining wheats resistant to eyespot by interspecific crossing wheat × Aegilops. Minutes Wkly Meet Acad Agric 53:149–154

    Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Article  Google Scholar 

  • Marais F, Marais A, McCallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49:871–879

    Article  CAS  Google Scholar 

  • McIntosh R, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Somers D, Appels R, Devos K (2008) Catalogue of gene symbols for wheat. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proc 11th Int Wheat Genet Symp, Sydney University Press, Sydney

  • McIntosh R, Dubcovsky J, Rogers J, Morris C, Appels R, Xia X (2010) Catalogue of gene symbols for wheat: 2010 supplement. Annu Wheat Newsl 56:273–282

    Google Scholar 

  • Milus EA, Seyran E, McNew R (2006) Aggressiveness of Puccinia striiformis f. sp. tritici isolates in the south-central United States. Plant Dis 90:847–852

    Article  Google Scholar 

  • Nelson RR (1978) Genetics of horizontal resistance to plant diseases. Annu Rev Phytopathol 16:359–378

    Article  Google Scholar 

  • Prins R, Pretorius ZA, Bender CM, Lehmensiek A (2011) QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega × Avocet S doubled haploid wheat population. Mol Breed 27:259–270

    Article  Google Scholar 

  • Qayoum A, Line RF (1985) High-temperature, adult-plant resistance to stripe rust of wheat. Phytopathol 75:1121–1125

    Article  Google Scholar 

  • Ramburan VP, Pretorius ZA, Louw JH, Boyd LA, Smith PH, Boshoff WHP, Prins R (2004) A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theor Appl Genet 108:1426–1433

    Article  PubMed  CAS  Google Scholar 

  • Rhoné B, Raquin A-L, Goldringer I (2007) Strong linkage disequilibrium near the selected Yr17 resistance gene in a wheat experimental population. Theor Appl Genet 114:787–802

    Article  PubMed  Google Scholar 

  • Röbbelen G, Sharp E (1978) Mode of inheritance, interaction and application of genes conditioning resistance to yellow rust. Fortschritte der Pflanzenzücht 9:1–88

    Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Shi ZX, Chen XM, Line RF, Leung H, Wellings CR (2001) Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome 44:509–516

    PubMed  CAS  Google Scholar 

  • Singh RP, Huerta-Espino J, William HM (2005) Genetics and breeding for durable resistance to leaf and stripe rust in wheat. Turk J Agric For 29:121–127

    CAS  Google Scholar 

  • Singh R, Huerta-Espino J, Bhavani S, Herrera-Foessel S, Singh D, Singh P, Velu G, Mason R, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Strange RN, Scott PR (2005) Plant disease: a threat to global food security. Annu Rev Phytopathol 43:83–116

    Article  PubMed  CAS  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. Theor Appl Genet 114:165–175

    Article  PubMed  CAS  Google Scholar 

  • Van Os H, Stam P, Visser R, Van Eck H (2005) Record: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wan A, Zhao Z, Chen X, He Z, Jin S, Jia Q, Yao G, Yang J, Wang B, Li G, Bi Y, Yuan Z (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis 88:896–904

    Article  Google Scholar 

  • Wang D, Shi J, Carlson SR, Cregan PB, Ward RW, Diers BW (2003) A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA marker. Crop Sci 43:1828–1832

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2010) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC (http://statgenncsuedu/qtlcart/WQTLCarthtm)

  • Wellings C (2007) A new pathotype of wheat stripe rust with implications for the VPM resistance. The University of Sydney, Plant Breeding Institute, Cereal rust report (season 2006) 4:1–2

  • Wellings C (2010) Global status of stripe rust. BGRI 2010 Technical Workshop, 30–31 May 2010, St Petersburg, Russia, pp: 34–44. http://www.globalrust.org

  • Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinforma 24:721–723

    Article  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

  • Zeller F (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proc 4th Int Wheat Genet Symp. University of Missouri, Columbia, pp 209–221

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, CAP Grant No. 2006-55606-16629. The authors thank Dr. Xianming Chen, Wheat Genetics, Quality Physiology and Disease Research Unit, USDA-ARS, Department of Plant Pathology, Washington State University, Pullman, WA, USA, for kindly providing NILs for Yr17, and also acknowledge the help of Dr. Shengchu Wang, Department of Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA, for suggestive instructions in using Windows QTL Cartographer 2.5 software. The authors are also very grateful to Dr. R.A. McIntosh, Plant Breeding Institute, the University of Sydney, Australia, for critical reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Johnson.

Additional information

Communicated by X. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Y., Chen, Z., Wang, Y. et al. Characterization of a major QTL for adult plant resistance to stripe rust in US soft red winter wheat. Theor Appl Genet 123, 1401–1411 (2011). https://doi.org/10.1007/s00122-011-1675-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1675-8

Keywords

Navigation