Skip to main content
Log in

Development, identification, and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The wheat-Stagonospora nodorum pathosystem involves a number of pathogen-produced host-selective toxins that interact with host genes in an inverse gene-for-gene manner to cause disease. The wheat intervarietal recombinant inbred population derived from BR34 and Grandin (BG population) segregates for the toxin sensitivity genes Tsn1, Snn2, and Snn3, which confer sensitivity to the toxins ToxA, SnTox2, and SnTox3, respectively. Here, we report the addition of 141 molecular markers to the BG population linkage maps, the identification and/or development of markers tightly linked to Tsn1 and Snn2, and the validation of the markers using a set of diverse wheat accessions. The BG population maps now contain 787 markers, and new simple sequence repeat (SSR) markers closely linked to Snn2 on chromosome arm 2DS were identified. In an effort to target more markers to the Snn2 locus, STS markers were developed from 2DS bin-mapped ESTs resulting in the development and mapping of 36 markers mostly to the short arms of group 2 chromosomes. Together, SSR and EST-STS markers delineated Snn2 to a 4.0 cM interval. SSRs developed in related work for Tsn1 were mapped in the BG population and delineated the gene to a 1.0 cM interval. Evaluation of the markers for Tsn1 and Snn2 in a diverse set of wheat genotypes validated their utility for marker-assisted selection, which is particularly efficient for removing toxin sensitivity alleles from elite germplasm and varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Eyal Z (1981) Integrated control of Septoria diseases of wheat. Plant Dis 65:763–768

    Google Scholar 

  • Eyal Z, Scharen AL, Prescott JM, van Ginkel M (1987) The septoria diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Faris JD, Anderson JF, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora tritici-repentis. Phytopathology 86:459–463. doi:10.1094/Phyto-86-459

    Article  CAS  Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt SW, Ling H, Faris JD et al (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38:953–956. doi:10.1038/ng1839

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Meinhardt SW, Faris JD (2007) The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Plant J 51:681–692. doi:10.1111/j.1365-313X.2007.03166.x

    Article  PubMed  CAS  Google Scholar 

  • Friesen TL, Zhang Z, Solomon PS, Oliver RP, Faris JD (2008) Genetic characterization of a novel wheat-Stagonospora nodorum host-selective toxin interaction and its role in disease susceptibility. Plant Physiol 146:682–693. doi:10.1104/pp. 107.108761

    Article  PubMed  CAS  Google Scholar 

  • Haen KM, Lu H-J, Friesen TL, Faris JD (2004) Genomic targeting and high-resolution mapping of the Tsn1 gene in wheat. Crop Sci 44:951–962

    CAS  Google Scholar 

  • King JE, Cook RJ, Melville SC (1983) A review of the Septoria diseases of wheat and barley. Ann Appl Biol 103:345–374. doi:10.1111/j.1744-7348.1983.tb02773.x

    Article  Google Scholar 

  • Lamari L, Bernier CC (1989) Toxin of Pyrenophora tritici-repentis: host-specificity significance in disease, and inheritance of host reaction. Phytopathology 79:740–744. doi:10.1094/Phyto-79-740

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181. doi:10.1016/0888-7543(87)90010-3

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL (2004a) Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94:1056–1060. doi:10.1094/PHYTO.2004.94.10.1056

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Friesen TL, Meinhardt SW, Ali S, Rasmussen JB, Faris JD (2004b) Quantitative trait loci analysis and mapping of seedling resistance to Stagonospora nodorum leaf blotch in wheat. Phytopathology 94:1061–1067. doi:10.1094/PHYTO.2004.94.10.1061

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:792–794

    Google Scholar 

  • Liu ZH, Friesen TL, Ling H, Meinhardt SW, Oliver RP, Rasmussen JB et al (2006) The Tsn1–ToxA interaction in the wheat-Stagonospora nodorum pathosystem parallels that of the wheat-tan spot system. Genome 49:1265–1273. doi:10.1139/G06-088

    Article  PubMed  CAS  Google Scholar 

  • Lu HJ, Faris JD (2006) Macro- and micro-colinearity between the genomic region of wheat chromosome 5B containing the Tsn1 gene and the rice genome. Funct Integr Genomics 6:90–103. doi:10.1007/s10142-005-0020-1

    Article  PubMed  CAS  Google Scholar 

  • Lu HJ, Fellers JP, Friesen TL, Meinhardt SW, Faris JD (2006) Genomic analysis and marker development for the Tsn1 locus using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet 112:1132–1142. doi:10.1007/s00122-006-0215-4

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697. doi:10.1139/gen-43-4-689

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Akrawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totawa, pp 365–386

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Trticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot × Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L et al (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25. doi:10.1007/s10142-004-0106-1

    Article  PubMed  CAS  Google Scholar 

  • Suenaga K, Khairalla M, William HM, Hoisington DA (2005) A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48:65–75. doi:10.1139/g04-092

    Article  PubMed  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452. doi:10.1101/gr.184001

    Article  PubMed  CAS  Google Scholar 

  • Tomas A, Bockus WW (1987) Cultivar-specific toxicity of culture filtrate of Pyrenophora tritici-repentis. Phytopathology 77:1337–1340. doi:10.1094/Phyto-77-1337

    Article  Google Scholar 

  • Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051. doi:10.1007/s00122-006-0206-5

    Article  PubMed  CAS  Google Scholar 

  • Yu J-K, Dake TM, Singh S, Benscher D, Li W, Gill BS et al (2004) Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome 47:805–818. doi:10.1139/g04-057

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Francl LJ, Jordahl JG, Meinhardt SW (1997) Structural and physical properties of a necrosis-inducing toxin from Pyrenophora tritici-repentis. Phytopathology 87:154–160. doi:10.1094/PHYTO.1997.87.2.154

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA-ARS CRIS project 5442-22000-030-00D and by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, Grant Number 2003-35300-13109 to J.D.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin D. Faris.

Additional information

Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Friesen, T.L., Simons, K.J. et al. Development, identification, and validation of markers for marker-assisted selection against the Stagonospora nodorum toxin sensitivity genes Tsn1 and Snn2 in wheat. Mol Breeding 23, 35–49 (2009). https://doi.org/10.1007/s11032-008-9211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9211-5

Keywords

Navigation