Skip to main content
Log in

Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Aschochyta blight, caused by Mycosphaerella pinodes, is one of the most economically serious pea pathogens, particularly in winter sowings. The wild Pisum sativum subsp. syriacum accession P665 shows good levels of resistance to this pathogen. Knowledge of the genetic factors controlling resistance to M. pinodes in this wild accession would facilitate gene transfer to pea cultivars; however, previous studies mapping resistance to M. pinodes in pea have never included this wild species. The objective of this study was to identify quantitative trait loci (QTL) controlling resistance to M. pinodes in P. sativum subsp. syriacum and to compare these with QTLs previously described for the same trait in P. sativum. A population formed by 111 F6:7 recombinant inbred lines derived from a cross between accession P665 and a susceptible pea cultivar (Messire) was analysed using morphological, isozyme, RAPD, STS and EST markers. The map developed covered 1214 cM and contained 246 markers distributed in nine linkage groups, of which seven could be assigned to pea chromosomes. Six QTLs associated with resistance to M. pinodes were detected in linkage groups II, III, IV and V, which collectively explained between 31 and 75% of the phenotypic variation depending of the trait. While QTLs MpIII.1 and MpIII.2 were detected both for seedlings and field resistance, MpV.1 and MpII.1 were specific for growth chamber conditions and MpIII.3 and MpIV.1 for field resistance. Quantitative trait loci MpIII.1, MpII.1, MpIII.2 and MpIII.3 may coincide with other QTLs associated with resistance to M. pinodes previously described in P. sativum. Four QTLs associated with earliness of flowering were also identified. While dfIII.2 and dfVI.1, may correspond with other genes and QTLs controlling earliness in P. sativum, dfIII.1 and dfII.1 may be specific to P. sativum subsp. syriacum. Flowering date and growth habit were strongly associated with resistance to M. pinodes in the field evaluations. The relation observed between earliness, growth habit and resistance to M. pinodes is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avila CM, Sillero JC, Rubiales D, Moreno MT, Torres AM (2003) Identification of RAPD markers linked to Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theor Appl Genet 107(2):353–358

    Article  PubMed  CAS  Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean. Theor Appl Genet 108:1071–1078

    Article  PubMed  CAS  Google Scholar 

  • Blixt S (1974) The pea. In: King RC (ed) Handbook of genetics. Plenium Press, New York, pp 181–221

    Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun J, Kalo P, Penmetsa RV, Seres A, Kulikova O, Roe B, Bisseling T, Kiss GB, Cook DR (2004a) A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with Medicago sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Kim DJ, Zhu H, Mun JH, Baek JM, Roe B, Ellis N, Young ND, Doyle J, Kiss G, Cook DR (2004b) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101:15289–15294

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 198:963–971

    Google Scholar 

  • Clulow SA, Lewis BG, Matthews P (1991a) A pathotype clasification for Mycosphaerella pinodes. Phytopathology 131:322–332

    Google Scholar 

  • Clulow SA, Matthews P, Lewis BG (1991b) Genetical analysis of resistance to Mycosphaerella pinodes in pea seedling. Euphytica 58:183–189

    Article  Google Scholar 

  • Cobos MJ, Fernández MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Millán T (2005) A linkage map of chickpea (Cicer arietinum L) based on populations from Kabuli × Desi crosses: location of a resistance gene for fusarium wilt race 0. Theor Appl Genet 110:1347–1353

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Isaac P, Ranade S, Belajouza M, Cousin R, Devienne D (1994) Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and developmental traits in Pisum sativum L. Theor Appl Genet 88:17–27

    Article  CAS  Google Scholar 

  • Fondevilla S (2000) Identification and characterization of new sources of resistance to M. pinodes in pea. MSc thesis, University of Cordoba, Cordoba

  • Fondevilla S, Ávila CM, Cubero JI, Rubiales D (2005) Response to Mycosphaerella pinodes in a germplasm collection of Pisum spp. Plant Breed 124:313–315

    Article  Google Scholar 

  • Fondevilla S, Cubero JI, Rubiales D (2007) Inheritance of resistance to Mycosphaerella pinodes in two wild accessions of Pisum. Eur J Plant Pathol 119:53–58

    Article  Google Scholar 

  • Gilpin BJ, McCallum JA, Timmerman-Vaughan GM (1997) A linkage map of the pea (Pisum sativum) genome containing cloned sequences of known function and expresses sequences tags (ESTs). Theor Appl Genet 95:1289–1299

    Article  CAS  Google Scholar 

  • Hall KJ, Parker JS, Ellis THN, Turner L, Knox MR, Hofer JMI, Lu J, Ferrandiz C, Hunter PJ, Taylor JD, Baird K (1997) The relationship between genetic and cytogenetic maps of pea. II. Physical maps of linkage-mapping populations. Genome 40:755–769

    CAS  PubMed  Google Scholar 

  • Kalo P, Seves A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis THN, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246

    Article  PubMed  CAS  Google Scholar 

  • Kraft JM (1998) A search for resistance in peas to Mycosphaerella pinodes. Plant Dis 82:251–253

    Article  Google Scholar 

  • Kosambi DD (1994) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative trait using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abramson J, Barlow A, Dali MJ, Lincoln DE, Newburg L (1987) MAPMAKER: an interactive computer program for constructing genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lawyer SA (1984) Diseases caused by Ascochyta spp. In: Hargedon DJ (ed) Compendium of pea diseases. The American Phytopathological Society/APS Press, St. Paul, pp 11–15

    Google Scholar 

  • Macas J, Doležel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993) Location of seed protein genes on flow-sorted field bean chromosomes. Chromosome Res 1:107–115

    Article  PubMed  CAS  Google Scholar 

  • McPhee K (2003) Dry pea production and breeding—a mini—review. J Food Agr Environ 1:64–69

    Google Scholar 

  • Millán T, Rubio J, Iruela M, Daly K, Cubero JI, Gil J (2003) Markers associated with Ascochyta blight resistance in chickpea an their potential in marker-assisted selection. Field Crops Res 84:373–384

    Article  Google Scholar 

  • Moussart A, Tivoli B, Lemarchand E, Deneufbourg F, Roi S, Sicard G (1998) Role of seed infection by the Aschochyta blight pathogen of dried pea (Mycosphaerella pinodes) in seedling emergence, early disease development and transmission of the disease to aerial plant parts. Eur J Plant Pathol 104:93–102

    Article  Google Scholar 

  • Nilsson NO, Sll T, Bengston BO (1993) Chiasma and recombination data in plants: are they compatible? Trends Genet 9:344–348

    Article  PubMed  CAS  Google Scholar 

  • Onfroy C, Tivoli B, Corbière R, y Bouznad Z (1999) Cultural, molecular and pathogenic variability of Mycosphaerella pinodes and Phoma medicaginis var pinodella isolates from dried pea (Pisum sativum) in France. Plant Pathol 48:218–229

    Article  Google Scholar 

  • Palomino C, Satovic Z, Cubero JI, Torres AM (2006) Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 49:1227–1237

    Google Scholar 

  • Prioul S, Onfroy C, Tivoli B, Baranger A (2003) Controlled environment assessment of partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) seedlings. Euphytica 131:121–130

    Article  CAS  Google Scholar 

  • Prioul S, Frankewitz A, Deniot G, Morin G, Baranger A (2004) Mapping of quantitative trait loci for partial resistance to Mycosphaerella pinodes in pea (Pisum sativum L.) at the seedling and adult plant stages. Theor Appl Genet 108:1322–1334

    Article  PubMed  CAS  Google Scholar 

  • Prioul-Gervais S, Deniot G, Receveur EM, Frankewitz A, Fourmann M, Rameau C, Pilet-Nayel ML, Baranger A (2007) Candidate genes for quantitative resistance to Mycosphaerella pinodes in pea (Pisum sativum L.). Theor Appl Genet 114:971–984

    Article  PubMed  CAS  Google Scholar 

  • Roger C, Tivoli R (1996) Spatio temporal development of pynidia and perithecia and dissemination of spores of Mycosphaerella pinodes on pea (Pisum sativum). Plant Pathol 45:518–528

    Article  Google Scholar 

  • Román B, Torres AM, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk) resistance in faba bean (Vicia faba L). Genome 45:1057–1063

    Article  PubMed  Google Scholar 

  • Román B, Satovic Z, Avila CM, Rubiales D, Moreno MT, Torres AM (2003) Locating genes associated with Ascochyta fabae resistance in Vicia faba L. Aust J Agric Res 54:85–90

    Article  Google Scholar 

  • Rubiales D, Pérez-de-Luque A, Cubero JI, Sillero JC (2003) Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot 22:865–872

    Article  Google Scholar 

  • Rubio J, Hajj Moussa E, Kharrat M, Moreno MT, Millán T, Gil J (2003) Two genes and linked RAPD markers involved in resistance to Fusarium oxisporum f sp Ciceris race 0 in chickpea. Plant Breed 122:188–191

    Article  CAS  Google Scholar 

  • Selander RK, Smith MH, Yahn SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Univ Texas Publ 7103:49–90

    Google Scholar 

  • Sybenga J (1996) Recombination and chiasma: few but intriguing discrepancies. Genome 39:473–484

    CAS  PubMed  Google Scholar 

  • Tar’an B, Warkentin T, Somers DJ, Miranda D, Vandenberg A, Balde S, Woods S, Bing D, Xue A, DeKoeyer D, Penner G (2003) Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet 107:1482–1491

    Article  PubMed  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Russell AC, Khan T, Butler R, Gilpin M, Murray S, Falloon K (2002) QTL mapping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111

    Article  CAS  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell AC, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631

    Article  PubMed  CAS  Google Scholar 

  • Tivoli B, Beasse C, Lemarchand E, Masson E (1996) Effect of ascochyta blight (Mycosphaerella pinodes) on yield components of single pea (Pisum sativum L.) plants under field conditions. Ann Appl Biol 129:207–216

    Article  Google Scholar 

  • Tivoli B, Baranger A, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillero JC, Sweetinghan M, Muehlbauer FJ (2006) Screening techniques and sources of resistance to foliar diseases caused by the main world-wide necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945

    Article  CAS  Google Scholar 

  • Valderrama MR, Román B, Satovic Z, Rubiales D, Cubero JI, Torres AM (2004) Locating quantitative trait loci associated with Orobanche crenata resistance in pea. Weed Res 44:1–6

    Article  Google Scholar 

  • Wallen VR (1965) Field evaluation of the importance of the Ascochyta complex of peas. Can J Plant Sci 45:27–33

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Gaffney P, Zeng Z-B (2005) Windows QTL Cartographer version 2.5. Statistical Genetics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  • Williams JGK, Kubelic AR, Livak KJ, Raflaski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetics markers. Nucleid Acids Res 18:6531–6535

    Article  CAS  Google Scholar 

  • Wroth JM (1996) Host- pathogen relationship of the ascochyta bligt (Mycosphaerella pinodes (Berk & Blox) Vesterg ) disease of field pea (Pisum sativum L ). PhD thesis. University of Western Australia, Perth

  • Wroth JM (1998) Possible role for wild genotypes of Pisum spp. to enhance ascochyta bligt resistance in pea. Aust J Exp Agr 38:469–479

    Article  Google Scholar 

  • Wroth JM (1999) Evidence suggest that Mycosphaerella pinodes infection of Pisum sativum is inherited as a quantitative trait. Euphytica 107:193–204

    Article  Google Scholar 

  • Xue AG, Warkentin TD (2001) Partial resistance to Mycosphaerella pinodes in field pea. Can J Plant Sci 81:535–540

    Google Scholar 

  • Xue AG, Warkentin TD, Kenaschuk EO (1997) Effect of timings of inoculation with Mycosphaerella pinodes on yield and seed infection on field pea. Can J Plant Sci 77:685–689

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zimmer MC, Sabourin D (1986) Determining resistance reaction of field pea cultivars at the seedling stage to Mycosphaerella pinodes. Phytopathology 76:878–881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fondevilla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fondevilla, S., Satovic, Z., Rubiales, D. et al. Mapping of quantitative trait loci for resistance to Mycosphaerella pinodes in Pisum sativum subsp. syriacum . Mol Breeding 21, 439–454 (2008). https://doi.org/10.1007/s11032-007-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9144-4

Keywords

Navigation