Skip to main content
Log in

Metabolically engineered male sterility in rapeseed (Brassica napus L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Male sterility is of special interest as a mechanism allowing hybrid breeding, especially in important crops such as rapeseed (Brassica napus). Male sterile plants are also suggested to be used as a biological safety method to prevent the spread of transgenes, a risk that is high in the case of rapeseed due to the mode of pollination, out-crossing by wind or insects, and the presence of related, cross-pollinating species in the surrounding ecosystem in Europe. Different natural occurring male sterilities and alloplasmic forms have been tried to be used in rapeseed with more or less success. Due to the difficulties and limitations with these systems, we present a biotechnological alternative: a metabolically engineered male sterility caused by interference with anther-specific cell wall-bound invertase. This is an essential enzyme for carbohydrate supply of the symplastically isolated pollen. The activity of this enzyme is reduced either by antisense interference or by expressing an invertase inhibitor under control of the anther-specific promoter of the invertase with the consequence of a strong decrease of pollen germination ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Madden TA, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acid Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bannerrot H, Boulidard L, Couderon Y, Temple J (1974) Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. In: Wills AB, North C (eds) Proc Eucarpia Meet Cruciferae. Scottish Hortic Res Inst, Invergavrie, UK, pp 52–54

  • Boavida LC, McCormic S (2007) Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana. Plant J 52:570–582

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme S, Budar F, Férault M, Pelletier G (1991) A 2.5-kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr Genet 19:121–127

    Article  CAS  Google Scholar 

  • Bonhomme S, Budar F, Lancelin D, Small I, Defrance M-C, Pelletier G (1992) Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male-sterility in Brassica cybrids. Mol Gen Genet 235:340–348

    Article  CAS  PubMed  Google Scholar 

  • Bonnet A (1975) Introduction et utilisation d’une stérilité mâle cytoplasmique dans des variétés précoces européennes de radis Raphanus sativus L. Ann Amélior Plantes 25:381–397

    Google Scholar 

  • Brewbaker JL (1964) Agricultural genetics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Brown GG (1999) Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. J Hered 90:351–356

    Article  CAS  Google Scholar 

  • Brown GG, Formanova N, Jin H, Wargachuk R, Dendy C, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyls segment explants. Plant Cell Rep 21:599–604

    CAS  PubMed  Google Scholar 

  • Cho JI, Lee SK, Ko S, Kim HK, Jun SH, Lee JH, Bhoo SH, Lee KW, An G, Hahn TR, Jeon JS (2005) Molecular cloning and expression analysis of the cell-wall invertase gene family in rice (Oryza sativa L.). Plant Cell Rep 24:225–236

    Article  CAS  PubMed  Google Scholar 

  • Dahlqvist A, Brun A (1962) A method for the histochemical demonstration of disaccharidase activities: application to invertase and trehalase in some animal tissues. J Histochem Cytochem 10:294–302

    CAS  Google Scholar 

  • De Coninck B, Le Roy K, Francis I, Clerens S, Vergauwen R, Halliday AM, Smith SM, Van Laere A, Van den Ende W (2005) Arabidopsis AtcwINV3 and 6 are not invertases but are fructan exohydrolases (FEHs) with different substrate specificities. Plant Cell Environ 28:432–443

    Article  Google Scholar 

  • Delourme R, Eber F, Renard M (1991) Radish cytoplasmic male sterility in rapeseed: breeding restorer lines with a good female fertility. In: Proceedings of the 8th international rapeseed congress. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 1506–1510

  • Delourme R, Foisset N, Horvais R, Barret P, Champagne G, Cheung WY, Landry BS, Renard M (1998) Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 97:129–134

    Article  CAS  Google Scholar 

  • Doehlert DC, Felker FC (1987) Characterization and distribution of invertase activity in developing maize (Zea mays) kernels. Physiol Plant 70:51–57

    Article  CAS  Google Scholar 

  • Engelke T, Hirsche J, Roitsch T (2010) Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. J Exp Bot. doi:10.1093/jxb/erq105

  • Esch E, Wricke G (1995) Investigations on self-incompatibility in Brassica napus L. towards hybrid breeding. In: Proceedings of the 9th international rapeseed congress. Cambridge, pp 83–85

  • Fan Z, Stefansson BR (1986) Influence of temperature on sterility of two cytoplasmic male-sterility systems in rape (Brassica napus L.). Can J Plant Sci 66:221–227

    Article  Google Scholar 

  • Fan Z, Stefansson BR, Sernyk JL (1986) Maintainers and restorers for three male-sterility-inducing cytoplasms in rape (Brassica napus L.). Can J Plant Sci 66:229–234

    Article  Google Scholar 

  • Feistritzer WR, Kelly AF (1987) Hybrid seed production of selected cereal oil and vegetable crops. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferrari TE, Wallace DH (1975) Germination of Brassica pollen and expression of incompatibility in vitro. Euphytica 24:757–765

    Article  CAS  Google Scholar 

  • Fridman E, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 131:603–609

    Article  CAS  PubMed  Google Scholar 

  • Fu TD (1981) Production and research of rapeseed in the People’s Republic of China. Eucarpia Cruciferae Newsl 6:6–7

    Google Scholar 

  • Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol 115:273–282

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Roitsch T (1999) The different pH-optima and substrate specificities of extracellular and vacuolar invertases are determined by a single amino acid substitution. Plant J 20:707–711

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, Roitsch T (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    Article  CAS  PubMed  Google Scholar 

  • Grelon M, Budar F, Bonhomme S, Pelletier G (1994) Ogura cytoplasmic male-sterile (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol Gen Genet 243:540–547

    Article  CAS  PubMed  Google Scholar 

  • Haouazine-Takvorian N, Tymowska-Lalanne Z, Takvorian A, Tregear J, Lejeune A, Kreis M (1997) Characterization of two members of the Arabidopsis thaliana gene family, Atβfruct3 and Atβfruct4, coding for vacuolar invertases. Gene 197:239–251

    Article  CAS  PubMed  Google Scholar 

  • Heyn FW (1976) Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus. Cruciferae Newsl 1:15–16

    Google Scholar 

  • Hirsche J, Engelke T, Völler D, Götz M, Roitsch T (2009) Interspecies compatibility of the anther specific cell wall invertase promoters from Arabidopsis and tobacco for generating male sterile plants. Theor Appl Genet 118:235–245

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin T (1983) A medium for germinating Brassica pollen in vitro. Cruciferae Newsl 8:62

    Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform 2008:1–5, Article ID 420747

  • Ji X, Van den Ende W, Van Laere A, Cheng S, Bennett J (2005) Structure, evolution, and expression of the two invertase gene families of rice. J Mol Evol 60:615–634

    Article  CAS  PubMed  Google Scholar 

  • Koonjul PK, Minhas JS, Nunes C, Sheoran IS, Saini HS (2004) Selective transcriptional down-regulation of anther invertases precedes the failure of pollen development in water-stressed wheat. J Exp Bot 56:179–190

    PubMed  Google Scholar 

  • L’Homme Y, Brown GG (1993) Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus. Nucl Acids Res 21:1903–1909

    Article  PubMed  Google Scholar 

  • L’Homme Y, Stahl RJ, Li XQ, Hameed A, Brown GG (1997) Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr Genet 31:325–335

    Article  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lauer K (2006) Nt-VIF—ein proteinogener Inhibitor der vakuolären Invertasen in Tabak. Thesis. Fakultät für Biologie, Universität Heidelberg, Heidelberg, Germany

  • Le Roy K, Lammens W, Verhaest M, De Coninck B, Rabijns A, Van Laere A, Van den Ende W (2007) Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp-239) substitution transforms Arabidopsis cell wall invertase 1 into a fructan 1-exohydrolase. Plant Physiol 145:616–625

    Article  CAS  PubMed  Google Scholar 

  • Li XQ, Jean M, Landry BS, Brown GG (1998) Restorer genes for different forms of Brassica cytoplasmic male sterility map to a single nuclear locus that modifies transcripts of several mitochondrial genes. Proc Natl Acad Sci USA 95:10032–10037

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Guan C, Zhao F, Chen S (2005) Inheritance and mapping of a restorer gene for the rapeseed cytoplasmic male sterile line 681A. Plant Breed 124:5–8

    Article  CAS  Google Scholar 

  • Lorenz K, Lienhard S, Sturm A (1995) Structural organization and differential expression of carrot beta-fructofuranosidase genes: identification of a gene coding for a flower bud-specific isozyme. Plant Mol Biol 28:189–194

    Article  CAS  PubMed  Google Scholar 

  • Maddison AL, Hedley PE, Meyer RC, Aziz N, Davidson D, Machray GC (1999) Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol Biol 41:741–751

    Article  CAS  PubMed  Google Scholar 

  • Mathias R (1985) Transfer of cytoplasmic male sterility from brown mustard (Brassica juncea (L.) Coss.) into rapeseed (Brassica napus L.). Z Pflanzenzüchtg 95:371–374

    Google Scholar 

  • Möhring S, Horstmann V, Esch E (2005) Development of a molecular CAPS marker for the self-incompatibility locus in Brassica napus and identification of different S alleles. Plant Breed 124:105–110

    Article  Google Scholar 

  • Murayama H, Handa S (2007) Genes for alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Ogura H (1968) Studies on the new male-sterility in Japanese radish with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Oliver SN, van Dongen JT, Alfred SC, Mamun EA, Zhao X, Saini HS, Fernandes SF, Blanchard CL, Sutton BG, Geigenberger P, Dennis ES, Dolferus R (2005) Cold-induced repression of the rice anther-specific cell wall invertase gene OSINV4 is correlated with sucrose accumulation and pollen sterility. Plant Cell Environ 28:1534–1551

    Article  CAS  Google Scholar 

  • Pellan-Delourme R, Renard M (1988) Cytoplasmic male sterility in rapeseed (Brassica napus L.). Female fertility of restored rapeseed with ogura and hybrid cytoplasms. Genome 30:234–238

    Article  Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetrit P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Gent 191:244–250

    Article  CAS  Google Scholar 

  • Pelletier G, Vedel F, Chétrit P, Renard M, Pellan-Delourme R, Mesquida J (1987) Molecular, phenotypic and genetic characterization of mitochondrial recombinants in rapeseed. In: Proceedings of the 7th international rapeseed conference. Poznan, Poland, pp 113–118

  • Proels RK, González MC, Roitsch T (2006) Gibberellins dependent induction of tomato extracellular invertase Lin7 is required for pollen development. Funct Plant Biol 33:547–554

    Article  CAS  Google Scholar 

  • Rahman MH (2005) Resynthesis of Brassica napus L. for self-incompatibility: self-incompatibility reaction, inheritance and breeding potential. Plant Breed 124:13–19

    Article  Google Scholar 

  • Röbbelen G (1991) Citation at the occasion of presenting the GCIRC Superior Scientist Award to FU Tingdong. In: Proceedings of the 8th international rapeseed Congress. Sasktoon, Canada, pp 2–5

  • Roberts IN, Gaude TC, Haarod G, Dickinson HG (1983) Pollen-stigma interactions in Brassica oleracea; a new pollen germination medium and its use in elucidating the mechanism of self incompatibility. Theor Appl Genet 65:231–238

    Article  Google Scholar 

  • Roitsch T, Engelke T (2006) Cytoplasmic, genic and transgene induced male sterility. In: da Silva JAT (ed) Floriculture, ornamental and plant biotechnology. Global Science Books, Ltd., London, UK

    Google Scholar 

  • Roitsch T, Bittner M, Godt DE (1995) Induction of apoplastic invertase of Chenopodium rubrum by d-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol 108:285–294

    Article  CAS  PubMed  Google Scholar 

  • Saini HS (1997) Effects of water stress on male gametophyte development in plants. Sex Plant Reprod 10:67–73

    Article  Google Scholar 

  • Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531

    Article  CAS  PubMed  Google Scholar 

  • Shiga T, Baba S (1971) Cytoplasmic male sterility in rape plants (Brassica napus L.). Jpn J Breed 21:16–17

    Google Scholar 

  • Shivanna KR, Sawhney VK (1995) Polyethylene glycol improves the in vitro growth of Brassica pollen tubes without loss in germination. J Exp Bot 46:1771–1774

    Article  CAS  Google Scholar 

  • Singh M, Brown GG (1991) Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 3:1349–1362

    Article  CAS  PubMed  Google Scholar 

  • Sodhi YS, Chandra A, Verma JK, Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2006) A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard Brassica juncea. Theor Appl Genet 114:93–99

    Article  CAS  PubMed  Google Scholar 

  • Stiewe G, Röbbelen G (1994) Establishing cytoplasmic male sterility in Brassica napus by mitochondrial recombination with B. tournefortii. Plant Breed 113:294–304

    Article  CAS  Google Scholar 

  • Sturm A (1999) Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol 121:1–7

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  PubMed  Google Scholar 

  • Thompson KF (1972) Cytoplasmic male sterility in oil-seed rape plants. Heredity 29:253–257

    Article  Google Scholar 

  • Tymowska-Lalanne Z, Kreis M (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259–265

    Article  CAS  PubMed  Google Scholar 

  • Van den Ende W, De Coninck B, Clerens S, Vergauwen R, Van Laere A (2003) Unexpected presence of fructan 6-exohydrolases (6-FEHs) in non-fructan plants. Characterization, cloning, mass mapping and functional analysis of a novel “cell-wall invertase-like” specific 6-FEH from sugar beet (Beta vulgaris L.). Plant J 36:697–710

    Article  PubMed  Google Scholar 

  • Vargas W, Cumino A, Salerno GL (2003) Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta 216:951–960

    CAS  PubMed  Google Scholar 

  • Vargas WA, Pontis HG, Salerno GL (2008) New insights on sucrose metabolism: evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta 277:795–807

    Article  Google Scholar 

  • Wan Z, Jing B, Tu J, Ma C, Shen J, Yi B, Wen J, Huang T, Wang X, Fu T (2008) Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theor Appl Genet 116:355–362

    Article  PubMed  Google Scholar 

  • Zhang X, Mal C, Fu T, Li Y, Wang T, Chen Q, Tu J, Shen J (2008) Development of SCAR markers linked to self-incompatibility in Brassica napus L. Mol Breed 21:305–315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The skillful technical assistance of Christine Hampp, Jenifer Rech, Doris Waffler and Lisa Schneider and financial support by the Bundesministerium für Bildung und Forschung, Bayerisches Staatsministerium für Umwelt, Gesundheit und Verbraucherschutz and DFG-Graduiertenkolleg-1342 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Engelke.

Additional information

Communicated by I. Rajcan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelke, T., Hirsche, J. & Roitsch, T. Metabolically engineered male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 122, 163–174 (2011). https://doi.org/10.1007/s00122-010-1432-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1432-4

Keywords

Navigation