Skip to main content
Log in

Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Nineteen novel full-ORF α-gliadin genes and 32 pseudogenes containing at least one stop codon were cloned and sequenced from three Aegilops tauschii accessions (T15, T43 and T26) and two bread wheat cultivars (Gaocheng 8901 and Zhongyou 9507). Analysis of three typical α-gliadin genes (Gli-At4, Gli-G1 and Gli-Z4) revealed some InDels and a considerable number of SNPs among them. Most of the pseudogenes were resulted from C to T change, leading to the generation of TAG or TAA in-frame stop codon. The putative proteins of both Gli-At3 and Gli-Z7 genes contained an extra cysteine residue in the unique domain II. Analysis of toxic epitodes among 19 deduced α-gliadins demonstrated that 14 of these contained 1–5 T cell stimulatory toxic epitopes while the other 5 did not contain any toxic epitopes. The glutamine residues in two specific ployglutamine domains ranged from 7 to 27, indicating a high variation in length. According to the numbers of 4 T cell stimulatory toxic epitopes and glutamine residues in the two ployglutamine domains among the 19 α-gliadin genes, 2 were assigned to chromosome 6A, 5 to chromosome 6B and 12 to chromosome 6D. These results were consistent with those from wheat cv. Chinese Spring nulli-tetrasomic and phylogenetic analysis. Secondary structure prediction showed that all α-gliadins had high content of β-strands and most of the α-helixes and β-strands were present in two unique domains. Phylogenetic analysis demonstrated that α-gliadin genes had a high homology with γ-gliadin, B-hordein, and LMW-GS genes and they diverged at approximate 39 MYA. Finally, the five α-gliadin genes were successfully expressed in E. coli, and their expression amount reached to the maximum after 4 h induced by IPTG, indicating that the α-gliadin genes can express in a high level under the control of T7 promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allaby RG, Banerjee M, Brown TA (1999) Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat. Genome 42:296–307

    Article  CAS  PubMed  Google Scholar 

  • An XL, Zhang Q, Yan YM, Li QY, Zhang YZ, Wang AL, Pei YH, Tian JZ, Wang HB, Hsam SL, Zeller FJ (2006) Cloning and molecular characterization of three novel LMW-i glutenin subunit genes from cultivated einkorn (Triticum monococcum L.). Theor Appl Genet 113:383–395

    Article  CAS  PubMed  Google Scholar 

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Litts JC, Gautier MF, Greene FC (1984) Nucleic acid sequence and chromosome assignment of a wheat storage protein gene. Nucleic Acids Res 12:8129–8144

    Article  CAS  PubMed  Google Scholar 

  • Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I, characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of the gene family. Theor Appl Genet 95:50–58

    Article  CAS  Google Scholar 

  • Anderson OD, Gu YQ, Kong K, Lazo GR, Wu J (2009) Structure of the omega-gliadin gene family. Funct Integ Genomics 9:397–410

    Article  CAS  Google Scholar 

  • Arentz-Hansen EH, McAdam SN, Molberg O, Kristiansen C, Sollid LM (2000) Production of a panel of recombinant gliadins for the characterisation of T cell reactivity in coeliac disease. Gut 46:46–51

    Article  CAS  PubMed  Google Scholar 

  • Bai W, Cai A, Rz Z, Li A, Huo N, Li S, Gu YQ, Yabut L, Jia J, Qi Y (2009) Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Functional and Integrative Genomics 9:532–541

    Google Scholar 

  • Barro F, Rooke L, Bekes F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barcelo P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Xu C, Chen M, Wang Y, Xia G (2008) A new alpha-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum. Mol Breeding 22:675–685

    Article  CAS  Google Scholar 

  • Cornell HJ, Wills-Johnson G (2001) Structure-activity relationships in coeliac-toxic gliadin peptides. Amino Acids 21:243–253

    Article  CAS  PubMed  Google Scholar 

  • Cox TS, Sears RG, Bequette RK, Martin TJ (1995) Germplasm enhancement in winter wheat × Triticum tauschii backcross populations. Crop Sci 35:913–919

    Article  Google Scholar 

  • D’Ovidio R, Lafiandra D, Tanzarella OA, Anderson OD, Greene FC (1991) Molecular characterization of bread wheat mutants lacking the entire cluster of chromosome 6A controlled gliadin components. J Cereal Sci 14:125–129

    Article  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Galili G (1989) Heterologous expression of a wheat high molecular weight glutenin gene in Escherichia coli. Proc Natl Acad Sci USA 86:7756–7760

    Article  CAS  PubMed  Google Scholar 

  • Gao SC, Gu YQ, Wu JJ, Coleman-Derr D, Huo NX, Crossman C, Jia JZ, Zuo Q, Ren ZL, Anderson OD, Kong XY (2007) Rapid evolution and complex structural organization in genomic regions harboring multiple prolamin genes in the polyploid wheat genome. Plant Mol Biol 65:189–203

    Article  CAS  PubMed  Google Scholar 

  • Gu YQ, Crossman C, Kong XY, Luo MC, You FM, Coleman-Derr D, Dubcovsky J, Anderson OD (2004) Genomic organization of the complex alpha-gliadin gene loci in wheat. Theor Appl Genet 109:648–657

    Article  CAS  PubMed  Google Scholar 

  • Harberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234–242

    Article  CAS  Google Scholar 

  • Hsam SLK, Kieffer R, Zeller FJ (2001) Significance of Aegilops tauschii glutenin genes on breadmaking properties of wheat. Cereal Chem 78:521–525

    Article  CAS  Google Scholar 

  • Huo N, Lazo GR, Vogel JP, You F, Ma Y, Hayden DM, Coleman-Derr D, Hill T, Dvorak J, Anderson OD, Luo M, Gu YQ (2007) Characterizing the nuclear genome structure of Brachypodium distachyon using BAC end sequences. Funct Integr Genomics 8:135–147

    Article  PubMed  Google Scholar 

  • Jia J, Fu J, Zheng J, Zhou X, Huai J, Wang J, Wang M, Zhang Y, Chen X, Zhang J, Zhao J, Su Z, Lv Y, Wang G (2006) Annotation and expression profile analysis of 2073 full-length cDNAs from stress-induced maize (Zea mays L.) seedlings. Plant J 48:710–727

    Article  CAS  PubMed  Google Scholar 

  • Kasarda DD, D’Ovidio R (1999) Deduced amino acid sequence of an alpha-gliadin gene from spelt wheat (spelta) includes sequences active in celiac disease. Cereal Chem 76:548–551

    Article  CAS  Google Scholar 

  • Kasarda DD, Okita TW, Bernardin JE, Baecker PA, Nimmo CC, Lew EJ, Dietler MD, Greene FC (1984) Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum). Proc Natl Acad Sci USA 81:4712–4716

    Article  CAS  PubMed  Google Scholar 

  • Khatkar BS, Fido RJ, Tatham AS, Schofield JD (2002) Functional properties of wheat gliadins. II. Effects on dynamic rheological properties of wheat gluten. J Cereal Sci 35:307–313

    Article  CAS  Google Scholar 

  • Li X, Zhang Y, Gao L, Wang A, Ji K, He Z, Appels R, Ma W, Yan Y (2007) Molecular cloning, heterologous expression, and phylogenetic analysis of a novel y-type HMW glutenin subunit gene from the G genome of Triticum timopheevii. Genome 50:1130–1140

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang A, Xiao Y, Yan Y, He Z, Appels R, Ma W, Hsam SLK, Zeller FJ (2008a) Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica 159:181–190

    Article  CAS  Google Scholar 

  • Li X, Ma W, Gao L, Zhang Y, Wang A, Ji K, Wang K, Appels R, Yan Y (2008b) A novel chimeric low-molecular-weight glutenin subunit gene from the wild relatives of wheat Aegilops kotschyi and Ae. juvenalis: evolution at the Glu-3 Loci. Genetics 180:93–101

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet 111:410–422

    Article  CAS  PubMed  Google Scholar 

  • Masci S, D’Ovidio R, Lafiandra D, Kasarda DD (2000) A 1B coded low-molecular-weight glutenin subunit associated with quality in durum wheats show strong similarity to subunits present in some bread wheat cultivars. Theor Appl Genet 100:396–400

    Article  CAS  Google Scholar 

  • Metakovsky EV (1991) Gliadin allele identification in common wheat. II. Catalogue of gliadin alleles in common wheat. J Genet Breed 45:325–344

    Google Scholar 

  • Metakovsky EV, Annicchiarico P, Boggini G, Pogna NE (1997) Relationship between gliadin alleles and dough strength in Italian bread wheat cultivars. J Cereal Sci 25:229–236

    Article  CAS  Google Scholar 

  • Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences. J Biol Chem 260:8203–8213

    CAS  PubMed  Google Scholar 

  • Qi PF, Yue YW, Long H, Wei YM, Yan ZH, Zheng YL (2006) Molecular characterization of alpha-gliadin genes from wild emmer wheat (Triticum dicoccoides). DNA Seq 17:415–421

    CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) Genetics of wheat gluten proteins. Adv Genet 49:111–184

    Article  CAS  PubMed  Google Scholar 

  • Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P, Drijfhout JW, Jonker H, van Soest L, Smulders MJ, Bosch D, Gilissen LJ, Koning F (2005) Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129:797–806

    Article  CAS  PubMed  Google Scholar 

  • Sumner-Smith M, Rafalski JA, Sugiyama T, Stoll M, Soll D (1985) Conservation and variability of wheat alpha/beta-gliadin genes. Nucleic Acids Res 13:3905–3916

    Article  CAS  PubMed  Google Scholar 

  • Tamás L, Shewry PR (2006) Heterologous expression and protein engineering of wheat gluten proteins. J Cereal Sci 43:259–274

    Article  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tatham A, Shewry P (2008) Allergens to wheat and related cereals. Clin Experim Allergy 38:1712–1726

    CAS  Google Scholar 

  • Vaccino P, Becker H-A, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Gen Genomics 281:289–300

    Article  CAS  Google Scholar 

  • Vader W, Kooy Y, Van Veelen P, De Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW, Koning F (2002) The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122:1729–1737

    Article  CAS  PubMed  Google Scholar 

  • Vader W, Stepniak D, Kooy Y, Mearin L, Thompson A, van Rood JJ, Spaenij L, Koning F (2003) The HLA-DQ2 gene dose effect in celiac disease is directly related to the magnitude and breadth of gluten-specific T cell responses. Proc Natl Acad Sci USA 100:12390–12395

    Article  CAS  PubMed  Google Scholar 

  • Van Herpen T, Goryunova SV, Van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, Van Veelen PA, Koning F, Van Soest LJM, Vosman B, Bosch D, Hamer RJ, Gilissen L, Smulders MJM (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1–13

    Article  PubMed  Google Scholar 

  • Wang AL, Gao LY, Li XH, Zhang YZ, He ZH, Xia XC, Zhang Y, Yan YM (2008) Characterization of two 1D-encoded omega-gliadin subunits closely related to dough strength and pan bread-making quality in common wheat (Triticum aestivum L.). J Cereal Sci 47:528–535

    Article  CAS  Google Scholar 

  • Wieser H (2001) Comparative investigations of gluten proteins from different wheat species. III. N-terminal amino acid sequences of α-gliadins potentially toxic for coeliac patients. Eur Food Res Technol 213:183–186

    Article  CAS  Google Scholar 

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Hsam SLK, Yu J, Jiang Y, Zeller FJ (2003) Allelic variation of the HMW glutenin subunits in Aegilops tauschii accessions detected by sodium dodecyl sulphate (SDS-PAGE), acid polyacrylamide gel (A-PAGE) and capillary electrophoresis. Euphytica 130:377–385

    Article  CAS  Google Scholar 

  • Yan Y, Jiang Y, An XL, Pei YH, Li XH, Zhang YZ, Wang AL, He Z, Xia X, Bekes F, Ma W (2009) Cloning, expression and functional analysis of HMW glutenin subunit 1By8 gene from Italy pasta wheat (Triticum turgidum L. ssp. durum). J Cereal Sci 50:398–406

    Article  CAS  Google Scholar 

  • Zhang Y, Li Q, Yan Y, Zheng J, An X, Xiao Y, Wang A, Pei Y, Wang H, Hsam SL, Zeller FJ (2006) Molecular characterization and phylogenetic analysis of a novel glutenin gene (Dy10.1 t) from Aegilops tauschii. Genome 49:735–745

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li X, Wang A, An X, Zhang Q, Pei Y, Gao L, Ma W, Appels R, Yan Y (2008) Novel x-type high-molecular-weight glutenin genes from Aegilops tauschii and their implications on the wheat origin and evolution mechanism of Glu-D1–1 proteins. Genetics 178:23–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by grants from the National Natural Science Foundation of China (30830072, 30771334), the Chinese National Basic Research Program (2009CB118303), National 863 project (2006AA10Z186), and Beijing Natural Scientific foundation and the Key Developmental Project of Science and Technology of Beijing Municipal Commission of Education (KZ200910028003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wujun Ma or Yueming Yan.

Additional information

Communicated by B. Friebe.

Z. Xie, C. Wang, and K. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Z., Wang, C., Wang, K. et al. Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor Appl Genet 121, 1239–1251 (2010). https://doi.org/10.1007/s00122-010-1384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1384-8

Keywords

Navigation