Skip to main content
Log in

Genomic organization of the complex α-gliadin gene loci in wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

To better understand the molecular evolution of the large α-gliadin gene family, a half-million bacterial artificial chromosome (BAC) library clones from tetraploid durum wheat, Triticum turgidum ssp. durum (2n=4x=28, genome AB), were screened for large genomic segments carrying the α-gliadin genes of the Gli-2 loci on the group 6 homoeologous chromosomes. The resulting 220 positive BAC clones—each containing between one and four copies of α-gliadin sequences—were fingerprinted for contig assembly to produce contiguous chromosomal regions covering the Gli-2 loci. While contigs consisting of as many as 21 BAC clones and containing up to 17 α-gliadin genes were formed, many BAC clones remained as singletons. The accuracy of the order of BAC clones in the contigs was verified by Southern hybridization analysis of the BAC fingerprints using an α-gliadin probe. These results indicate that α-gliadin genes are not evenly dispersed in the Gli-2 locus regions. Hybridization of these BACs with probes for long terminal repeat retrotransposons was used to determine the abundance and distribution of repetitive DNA in this region. Sequencing of BAC ends indicated that 70% of the sequences were significantly similar to different classes of retrotransposons, suggesting that these elements are abundant in this region. Several mechanisms underlying the dynamic evolution of the Gli-2 loci are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a, b
Fig. 3a, b
Fig. 4a–d
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Maden TL, Schaffer AA, Zhang JH, Zhang Z, Miller M, Lipman DJ (1997) Gapped BLAST and PSI-PLAST: a new generation of protein database search program. Nucleic Acids Res 25:3389–3402

    PubMed  Google Scholar 

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of gene family. Theor Appl Genet 95:50–58

    Article  CAS  Google Scholar 

  • Anderson OD, Rausch C, Moullet O, Lagudah ES (2003) The wheat D-genome HMW-glutenin locus: BAC sequencing, gene distribution, and retrotransposon clusters. Funct Integr Genomics 3:56–68

    PubMed  Google Scholar 

  • Cenci A, Chantret N, Kong X, Gu YG, Anderson OD, Fahima T, Distelfeld A, Dubcovsky J (2003) Construction and characterization of a half-million clone BAC library of durum wheat (Triticum turgidum ssp. durum). Theor Appl Genet 107:931–939

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Presting G, Barbarzuk, WB, Goicoechea JL, et al (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    CAS  PubMed  Google Scholar 

  • Clarke BC, Appel R (1999) Sequence variation at the Sec-1 locus of rye, Secale cereale (Poaceae). Pl Syst Evol 214:1–14

    Google Scholar 

  • Clarke BC, Mukai Y, Appel R (1996) The Sec-1 locus on the short arm of chromosome 1R of rye (Secale cereale). Chromosoma 105:269–275

    Article  CAS  PubMed  Google Scholar 

  • Collins N, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    CAS  PubMed  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • D’Ovidio R, Lafiandra D, Tanzarella OA, Anderson OA, Greene FC (1991) Molecular characterization of bread wheat mutants lacking the entire cluster of chromosome 6A-controlled gliadin components. J Cereal Sci 14:125–129

    CAS  Google Scholar 

  • D’Ovidio R, Tanzarella O, Masci S, Lafiandra D, Porceddu E (1992) RFLP and PCR analyses at Gli-1, Gli-2, Glu-1 and Glu-3 loci in cultivated and wild wheats. Hereditas 116:79–85

    CAS  Google Scholar 

  • Echenique V, Stamova B, Wolters P, Lazo G, Carollo L, and Dubcovsky J (2002) Frequencies of Ty1-copia and Ty3-gypsy retroelements within the Triticeae EST databases. Theor Appl Genet 104:840–844

    Article  Google Scholar 

  • Gu Y-Q, Anderson OD, Londeore C, Kong X, Chibbar RN, Lazo GR (2003) Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Genome 46:1084–1097

    Article  CAS  PubMed  Google Scholar 

  • Herberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic–tetrasomic lines. Mol Gen Genet 198:234–242

    Google Scholar 

  • Herberd NP, Flavell RB, Thompson RD (1987) Identification of a transposon-like insertion in a Glu-1 allele of wheat. Mol Genet Genomics 209:326–332

    Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA caroxylase and 3-phosphoglycerate kinae of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  Google Scholar 

  • Joppa LR, Du C, Hart GE, Hareland GA (1997) Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Fronhberg R, Dubcovsky J (2000) Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    Google Scholar 

  • Lafiandra D, Kasards DD, Morris R (1984) Chromosomal assignment of genes coding for the wheat gliadin protein components of the cultivars Cheyenne and Chinese Spring by two-dimensional (two-pH) electrophoresis. Theor Appl Genet 68:531–539

    CAS  Google Scholar 

  • Lijavetzky D, Muzzi G, Wicker T, Keller B, Wing, R, Dubcovsky J (1999) Construction and characterization of a bacterial artificial chromosome (BAC) library for the A genome of wheat. Genome 42:1176–1182

    Article  CAS  PubMed  Google Scholar 

  • Ma Z, Weining S, Sharp PJ, Liu C (2000) Non-gridded library: a new approach for BAC (bacterial artificial chromosome) exploitation in hexaploid wheat (Triticum aestivum). Nucleic Acids Res 28:E106

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Wood TC, Yu Y, Budiman MA, Tomkins J, Woo S, Sasinowski M, Presting G, Frisch D, Goff S, Dean RA, Wing RA (2000) Rice transposable elements: a survey of 73,000 sequence-tagged connectors. Genome Res 10:982–990

    CAS  PubMed  Google Scholar 

  • Marra MA, Kucaba TA, Dietrich NL, Green ED, Brownstein B, Wilson RK, McDonald KM, Hillier LW, McPherson JD, Waterston RH (1997) High-throughput fingerprint analysis of large-insert clones. Genome Res 7:1072–1084

    CAS  PubMed  Google Scholar 

  • Meyers BC, Chin DB, Shen KA, Sivaramakishnan S, Lavelle, DO, Zhang Z, Michelmore RW (1998) The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10:1817–1832

    CAS  PubMed  Google Scholar 

  • Meyers BC, Tingey SV, Morgante M (2001) Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. Genome Res 11:1660–1676

    CAS  PubMed  Google Scholar 

  • Moullet O, Zhang H-B, Lagudah ES (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor Appl Genet 99:305–313

    Article  Google Scholar 

  • Muniz LM, Cuadrado A, Jouve N, González JM (2001) The detection, cloning, and characterization of WIS 2–1A retrotransposon-like sequences in Triticum aestivum L. and × Triticosecale Wittmack and an examination of their evolution in related Triticeae. Genome 44:979–989

    Article  PubMed  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on breadmaking quality. Annu Rev Genet 38:141–153

    CAS  Google Scholar 

  • Reeves CD, Okita TW (1987) Analysis of α/β gliadin genes from diploid and hexaploid wheats. Gene 52:257–266

    Article  CAS  PubMed  Google Scholar 

  • San Miguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z, Bennetzen JL (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274:765–768

    CAS  PubMed  Google Scholar 

  • SanMiguel P, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct Integr Genomics 2:70–80

    PubMed  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    CAS  PubMed  Google Scholar 

  • Shewry PR, Tatham AS, Kasarda DD (1992) Cereal proteins and coeliac disease. In: Marsh MN (ed) Coeliac disease. Blackwell, London, pp 305–348

  • Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P (2000) A contiguous 66-kb barley DNA sequence provide evidence for reversible genome expansion. Genome Res 10:908–915

    CAS  PubMed  Google Scholar 

  • Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprints, markers, and FPC V4.7. Genome Res 10:1772–1787

    Article  CAS  PubMed  Google Scholar 

  • Song R, Llaca V, Linton E, Messing J (2001) Sequence, regulation, and evolution of the maize 22-kD alpha zein gene family. Genome Res 11:1817–1825

    CAS  PubMed  Google Scholar 

  • Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH (1999) Retrotransposon BARE-1 and its role in genome evolution in the genus Hordeum. Plant Cell 11:1769–1784

    CAS  PubMed  Google Scholar 

  • Wei F, Wing RA, Wise RP (2002) Genome dynamics and evolution of the Mla (powdery mildew) resistance locus in barley. Plant Cell 14:1903–1917

    Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B (2003a) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and A(m) genomes of wheat. Plant Cell 15:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Guyot R, Yahiaoui N, Keller B (2003b) CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Frances M. Dupont for reading the manuscript and making suggestions and corrections. All experiments comply with US laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Qiang Gu.

Additional information

Communicated by P. Langridge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y.Q., Crossman, C., Kong, X. et al. Genomic organization of the complex α-gliadin gene loci in wheat. Theor Appl Genet 109, 648–657 (2004). https://doi.org/10.1007/s00122-004-1672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1672-2

Keywords

Navigation