Skip to main content
Log in

A new α-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Ninety-five α-gliadin open reading frames were cloned and sequenced from the somatic hybrid wheat introgression line II-12 and its parents Triticum aestivum cv. Jinan177 (JN177) and Agropyron elongatum. Novel α-gliadin genes were found to originate via point mutation, unequal crossover or slippage of a parental gene, demonstrating that new genes could be rapidly created through somatic hybridization in a manner similar to that previously shown for high-molecular-weight glutenin subunits (HMW-GS) genes. The data reveal the composition and origin of the α-gliadin gene in II-12, showing that: (1) most were homologous to those of JN177; (2) a few were derived direct from A. elongatum; and (3) some new genes were created de novo. A particular quality attribute of interest was the presence or absence of celiac disease (CD) epitopes, which were found to be four times more common among α-gliadin genes from the parent wheat JN177 than in those from A. elongatum. Although four types of CD epitopes were found in introgression line II-12, the number of genes encoded CD epitopes was lower than in JN177 due to the occurrence of pseudogenes. We discuss the benefit of these α-gliadins to wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65

    Article  CAS  Google Scholar 

  • Anderson OD, Litts JC, Greene FC (1997) The α-gliadin gene family. I characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and Southern analysis of gene family. Theor Appl Genet 95:50–58

    Article  CAS  Google Scholar 

  • Anderson OD, Hsia CC, Adalsteins AE, Lew EJL, Kasarda DD (2001) Identification of several new classes of low-molecular-weight wheat gliadin related proteins and genes. Theor Appl Genet 103:307–315

    Article  CAS  Google Scholar 

  • Chen F, Luo Z, Zhang Z, Xia G (2007) Variation and potential value in wheat breeding of low-molecular-weight glutenin subunit genes cloned by genomic and RT-PCR in a derivative of somatic introgression between common wheat and Agropyron elongatum. Mol Breed 21(2):141–152

    Article  CAS  Google Scholar 

  • D’Ovidio R, Lafiandra D, Tanzarella OA, Anderson OA, Greene FC (1991) Molecular characterization of bread wheat mutants lacking the entire cluster of chromosome 6A-controlled gliadin components. J Cereal Sci 14:125–129

    Article  CAS  Google Scholar 

  • Felix I, Martinant JP, Bernard M, Bernard S, Branlard G (1996) Genetic characterisation of storage proteins in a set of F1-derived haploid lines in bread wheat. Theor Appl Genet 92:340–346

    CAS  Google Scholar 

  • Feng DS, Xia GM, Zhao SY, Chen FG (2004) Two quality-associated HMW glutenin subunits in a somatic hybrid line between Triticum aestivum and Agropyron elongatum. Theor Appl Genet 110:136–144

    Article  PubMed  CAS  Google Scholar 

  • Gu YQ, Crossman C, Kong XY, Luo MC, You FM, Coleman-Derr D, Dubcovsky J, Anderson OD (2004) Genomic organization of the complex α-gliadin gene loci in wheat. Theor Appl Genet 109:648–657

    Article  PubMed  CAS  Google Scholar 

  • Herberd NP, Bartels D, Thompson RD (1985) Analysis of the gliadin multigene loci in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet 198:234–242

    Article  Google Scholar 

  • Herpen TWJM, Goryunova SV, Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, Veelen PA, Koning F, Soest LJM, Vosman B, Bosch D, Hamer RJ, Gilissen LJWJ, Smulders MJM (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kasarda DD, Okita TW, Bemardin JE, Baecker PA, Nimmo CC, Lew EJ, Dietler MD, Greene FC (1984) Nucleic acid (cDNA) and amino acid sequences of alpha-type gliadins from wheat (Triticum aestivum). Proc Natl Acad Sci 81:712–716

    Article  Google Scholar 

  • Khatkar BS, Fido RJ, Tatham AS, Schofield JD (2002) Functional properties of wheat gliadins. 11. Effects on dynamic rheological properties of wheat gluten. J Cereal Sci 35:307–313

    Article  CAS  Google Scholar 

  • Koning F (2003) The molecular basis of celiac disease. J Mol Recognit 16:333–336

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Zhao S, Chen F, Xia G (2007) Generation of novel high quality HMW-GS genes in two introgression lines of Triticum aestivum/Agropyron elongatum. BMC Evol Biol 7:76–83

    Article  PubMed  CAS  Google Scholar 

  • Masci S, Rovelli L, Kasarda DD, Vensel WH, Lafiandra D (2002) Characterisation and chromosomal localisation of C-type low-molecular-weight glutenin subunits in the bread wheat cultivar Chinese Spring. Theor Appl Genet 104:422–428

    Article  PubMed  CAS  Google Scholar 

  • Miiller S, Wieser H (1995) The location of disulphide bonds in a-type gliadins. J Cereal Sci 22:21–27

    Article  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    PubMed  CAS  Google Scholar 

  • Okita TW, Cheesbrough V, Reeves CD (1985) Evolution and heterogeneity of the α/β-type and γ-type gliadin DNA sequences. J Biol Chem 260:8203–8213

    PubMed  CAS  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–143

    Article  CAS  Google Scholar 

  • Payne PI, Holt LM, Lawrence GJ, Law CN (1982) The genetics of gliadin and glutenin, the major storage proteins of the wheat endosperm. Qualitas Plantarum Plant Foods Hum Nutr 31:229–241

    Article  CAS  Google Scholar 

  • Pogna NE, Metakovsky EV, Redaelli R, Raineri F, Dachkevitch T (1993) Recombination mapping of Gli-5, a new gliadin-coding locus on chromosomes 1A and 1B in common wheat. Theor Appl Genet 87:113–121

    Article  CAS  Google Scholar 

  • Porceddu E, Turchetta T, Masci S, D’Ovidio R, Lafiandra D, Kasarda DD, Impiglia A, Nachit MM (1998) Variation in endosperm protein composition and technological quality properties in durum wheat. Euphytica 100:197–205

    Article  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Shewry PR, Tatham AS (1997) Biotechology of wheat quality. J Sci Food Agric 73:397–406

    Article  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Lafiandra D (2003) Genetics of wheat gluten proteins. Adv Genet 49:111–184

    Article  PubMed  CAS  Google Scholar 

  • Sobko TI (1984) Identification of a new locus which controls the synthesis of alcohol-soluble endosperm proteins in winter bread wheat. J Agric Sci (Kiev) 320:78–80

    Google Scholar 

  • Vader LW, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, Drijfhout JW, van Veelen PA, Koning F (2003) Characterization of cereal toxicity for celiac disease patients based on protein homology in grains. Gastroenterology 125:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Molberg O, Lundin L, Mutis T, Benckhuijsen W, Drijfhout JW, Koning F (1998) Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc Natl Acad Sci 95:10050–10054

    Article  PubMed  Google Scholar 

  • Wang H, Wei Y, Yan Z, Zheng Y (2007) Isolation and analysis of α-gliadin gene coding sequences from Tritcum durum. Agric Sci China 6(1):25–32

    Article  CAS  Google Scholar 

  • Wieser H (2007) Chemistry of gluten proteins. Food Microbiol 24:115–119

    Article  PubMed  CAS  Google Scholar 

  • Xia GM, Xiang FN, Zhou AF, Wang H, He SX, Chen HM (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevski. Theor Appl Genet 107:299–305

    Article  PubMed  CAS  Google Scholar 

  • Zhao TJ, Quan TY, Xia GM, Chen HM (2003) Glutenin and SDS sedimentation analysis of the F5 somatic hybrids between Triticum aestivum and Agropyron elongatum. J Shandong Univ (Nat Sci) 38(3):112–116. (in Chinese with English abstract)

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Rudi Appels (Centre for Comparative Genomics, Murdoch University, Perth WA 6150, Australia) for many significant suggestions and correction. This work was supported by the National 863 High Technology Research and Development Project 2006AA10Z173 and 2006011001020, Key and Doctor-Site Foundation of Ministry of Education in China, Natural Science Foundation of Shandong Province No. Y2007D48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangmin Xia.

Additional information

Fanguo Chen, Chunhui Xu, and Mengzhu Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F., Xu, C., Chen, M. et al. A new α-gliadin gene family for wheat breeding: somatic introgression line II-12 derived from Triticum aestivum and Agropyron elongatum . Mol Breeding 22, 675–685 (2008). https://doi.org/10.1007/s11032-008-9208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9208-0

Keywords

Navigation