Skip to main content
Log in

Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A doubled haploid line (DHL) population of melon derived from a cross between the Korean cultivar “Songwhan Charmi” accession PI161375 (SC), included in the horticultural group conomon, and the Spanish cultivar “Piel de Sapo” (PS), included in the horticultural group inodorus, was used to develop a collection of near isogenic lines (NILs). These parental lines represent very different melon cultivar groups, with important differences at fruit, plant, disease response and molecular level. This cross is one of the most polymorphic ones within melon germplasm. Selected DHLs were backcrossed to PS and further backcrossing and selfing was performed, monitoring introgressions from SC using molecular markers covering the melon genetic map. A final collection of 57 NILs was obtained, containing a unique independent introgression from SC in the PS genetic background. The introgressions within the collection cover at least 85% of the SC genome with an average introgression size of 41 cM, corresponding to 3.4% of the SC genome. The average resolution for mapping genes or quantitative trait loci is 18.90 cM. This set of NILs is a potentially powerful tool for the study of quantitative trait locus involved in melon fruit quality and other important complex traits, and the introduction of new genetic variability in modern cultivars from exotic sources. The NILs can also be used as pre-competitive breeding lines in melon breeding projects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akashi Y, Fukunda N, Wako T, Masuda M, Kato K (2002) Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125:385–396

    Article  CAS  Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriano G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni F, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    CAS  PubMed  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum x L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed J, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley SD (1998) Advanced backcross QTL analysis of tomato II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180

    Article  CAS  Google Scholar 

  • Chen JF, Adelberg J (2000) Interspecific hybridization in Cucumis-Progress, problems, and perspectives. Hortscience 35:11–14

    Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ (2004) Genetics of fruit quality in melon. Verification of QTLs involved in fruit shape with near-isogenic lines (NILs). In: Lebeda A, Paris S (eds) Progress in cucurbit genetics and breeding research. Palacký University, Olomouc, pp 499–502

    Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression-line population of Lycopersicon pennelli in the cultivated tomato enables the identification and fine mapping of yield-associated QTLs. Genetics 141:1147–1162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3rd edn. Longman scientific & technical, England

    Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, Van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukino N, Kusuya M, Kunihisa M, Matsumoto S (2004) Characterization of simple sequence repeats (SSRs) and developemnt of SSR markers in melon (Cucumis melo). In: Lebeda A, Paris S (eds) Progress in cucurbit genetics and breeding research. Palacký University, Olomouc, pp 503–506

    Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Oliver M, Gómez-Paniagua H, de Vicente MC (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864

    Article  CAS  Google Scholar 

  • Gonzalo MJ (2003) Generación, caracterización molecular y evaluación morfológica de una población de líneas dihaploides en melón (Cucumis melo L.). PhD Dissertation, Universitat de Lleida, Spain

  • Gonzalo MJ, Oliver M, Garcia-Mas J, Monfort A, Dolcet-Sanjuan R, Katzir N, Arús P Monforte AJ (2005) Simple-sequence repeat markers used in merging linkage maps of melon (Cucumis melo L.). Theor Appl Genet 110:802–811

    Article  CAS  PubMed  Google Scholar 

  • Hyne V, Kearsey MJ, Pike DJ, Snape JW (1995) QTL analysis: unreliability and bias in estimation procedures. Mol Breed 1:273–282

    Article  Google Scholar 

  • Jeuken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401

    Article  CAS  PubMed  Google Scholar 

  • Kearsey MJ, Farquhar AGL (1998) QTL analysis in plants: where are we now? Heredity 80:137–142

    Article  PubMed  Google Scholar 

  • Kirkbride JH (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway Publishers, North Caroline

    Google Scholar 

  • Klimyuk VI, Carroll BJ, Thomas CM, Jones JDG (1993) Alkali treatment for rapid preparation of plant material for reliable PCR analysis. Plant J 3(3):493–494

    Article  CAS  PubMed  Google Scholar 

  • Koumproglou R, Wilkes TW, Townson P, Wang XY, Beynon J, Pooni HS, Newbury HJ, Kearsey MJ (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31(3):355–364

    Article  CAS  PubMed  Google Scholar 

  • Lebreton CH, Visscher PM, Haley CS, Semikhodskii A, Quarrie SA (1998) A nonparametric bootstrap method for testing close linkage vs. pleiotrophy of coincident quantitative trait loci. Genetics. 150:931–943

    CAS  Google Scholar 

  • Liu J, van Eck J, Cong B, Tanksley (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Kakihara F, Kato M (2004) Characterization of six varieties of Cucumis melo L. based on morphological and physiological characters, including shelf-life of fruit. Euphytica 135:305–313

    Article  Google Scholar 

  • Lin SY, Sasaki T, Yano M (1998) Mapping quantitative trait loci controlling seed dormancy and heading date in rice, Oryza sativa L., using backcross inbred lines. Theor Appl Genet 96:997–1003

    Article  CAS  Google Scholar 

  • Mackay TF (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mliki A, Staub JE, Sun ZY, Ghorbel A (2001) Genetic diversity in melon (Cucumis melo L.): An evaluation of African germplasm. Genet Resour Crop Evol 48(6):587–597

    Article  Google Scholar 

  • Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Monforte AJ, Garcia-Mas J, Arús P (2003) Genetic variability in melon based on microsatellite variation. Plant Breed 122:1–6

    Article  Google Scholar 

  • Monforte AJ, Oliver M, Gonzalo MJ, Álvarez JM, Dolçet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon. Theor Appl Genet 108:750–758

    Article  CAS  PubMed  Google Scholar 

  • Monforte AJ, Eduardo I, Abad S, Arús P (2005) Inheritance mode of fruit traits in melon. Heterosis for fruit shape and its correlation with genetic distance. Euphytica 144:31–38

    Article  Google Scholar 

  • Morales M, Roig E, Monforte AJ, Arús P, Garcia-Mas J (2004) Single-nucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome 47:352–360

    Article  CAS  PubMed  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotech 14:214–219

    Article  CAS  PubMed  Google Scholar 

  • Oliver M, Garcia-Mas J, Cardús M, Pueyo N, López-Sesé AI, Arroyo M, Gómez-Paniagua H, Arús P, de Vicente MC (2001) Construction of a reference linkage map for melon. Genome 44:836–845

    Article  CAS  PubMed  Google Scholar 

  • Overy SA, Walker HJ, Malone S, Howard TP, Baxter CJ, Sweetlove LJ, Hill SA, Quick WP (2004) Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Exp Bot 56:287–296

    Article  PubMed  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19(6):303–306

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002a) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Gen Genomics 266:933–941

    Article  Google Scholar 

  • Périn C, Hagen L S, De Conto V, Katzir N, Danin-Poleg Y, Portnoy V, Baudracco-Arnas S, Chadoeuf J, Dogimont C, Pitrat M (2002b) A reference map of Cucumis melo based on two recombinant inbred lines populations. Theor Appl Genet 104:1017–1034

    Article  PubMed  Google Scholar 

  • Pestsova EG, Borner A, Roder MS (2001) Development of a set of Triticum aestivumAegilops tauschii introgression lines. Hereditas 135(2–3):139–143

    CAS  PubMed  Google Scholar 

  • Pillen K, Ganal MW, Tanksley SD (1996) Construction of a high-resolution genetic map and YAC-contigs in the tomato Tm-2a region. Theor Appl Genet 93:228–233

    Article  CAS  PubMed  Google Scholar 

  • Puigdomènech P, Martínez-Izquierdo JA, Arús P, Garcia-Mas J, Monforte AJ, Nuez F, Picó B, Blanca J, Aranda M, Arnau V, Robles A (2005) The Spanish melon genomics initiative

  • Ramsay LD, Jennings DE, Bohuon EJR, Arthur AE, Lydiate DJ, Kearsey MJ, Marshal DF (1996) The construction of a substitution library of recombinant backcross lines in Brassica oleracea for the precision mapping of quantitative trait loci. Genome 39:558–567

    Article  CAS  PubMed  Google Scholar 

  • Ritschel PS, de Lima Lins TC , Tristan RL , Buso GSC , Buso JA, Ferreira ME (2004) Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol 4:9. DOI:10.1186/1471–2229–4–9

    Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O’Brien WE, Conti DV, Witte JS, Lander ES, Nadeau JH (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  CAS  PubMed  Google Scholar 

  • Stepansky A, Kovalski I, Perl-Treves R (1999) Intraspecific classification of melons (Cucumis melo L.) in view of their phenotypic and molecular variation. Plant Syst Evol 217:313–332

    Article  CAS  Google Scholar 

  • Tanksley SD (1993). Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed T, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Van Berloo R (1999) The development of software for the graphical representation and filtering of molecular marker data: graphical genotypes (GGT). J Hered 90:328–329

    Article  Google Scholar 

  • von Korff M, Wang H, León J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • Wan XY, Wan JM, Su CC, Wang CM, Shen WB, Li JM, Wang HL, Jiang L, Liu SJ, Chen LM, Yasui H, Yoshimura A (2004) QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor Appl Genet 110:71–79

    Article  CAS  PubMed  Google Scholar 

  • Wehrhahn C, Allard R W (1965) The detection and measurement of the effects of individual genes involved in the inheritace of a quantitative character in wheat. Genetics 51:109–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitaker TW, Davis GN (1962) Cucurbits, botany, cultivation and utilization. Interscience Pub, New York

    Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2: 983–989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank N. Galofré, I. Marchal, A. Montejo A. Ortigosa, J. Adillón and P. Ramon for technical assistance. This work was funded in part by grants AGL2000–0360 and AGL2003–09175-C02–01, from the Spanish Ministry of Education and Science. AJM was partly supported by a contract from Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). IE was supported by a fellowship from the Spanish Ministry of Education. The experiments presented here comply with current Spanish law.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio J. Monforte.

Additional information

Communicated by I. Paran

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eduardo, I., Arús, P. & Monforte, A.J. Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112, 139–148 (2005). https://doi.org/10.1007/s00122-005-0116-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0116-y

Keywords

Navigation