Skip to main content
Log in

Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To understand the mechanisms of aluminum (Al) tolerance in wheat (Triticum aestivum L.), suppression subtractive hybridization (SSH) libraries were constructed from Al-stressed roots of two near-isogenic lines (NILs). A total of 1,065 putative genes from the SSH libraries was printed in a cDNA array. Relative expression levels of those genes were compared between two NILs at seven time points of Al stress from 15 min to 7 days. Fifty-seven genes were differentially expressed for at least one time point of Al treatment. Among them, 28 genes including genes for aluminum-activated malate transporter-1, ent-kaurenoic acid oxidase-1, β-glucosidase, lectin, histidine kinase, and phospoenolpyruvate carboxylase showed more abundant transcripts in Chisholm-T and therefore may facilitate Al tolerance. In addition, a set of genes related to senescence and starvation of nitrogen, iron, and sulfur, such as copper chaperone homolog, nitrogen regulatory gene-2, yellow stripe-1, and methylthioribose kinase, was highly expressed in Chisholm-S under Al stress. The results suggest that Al tolerance may be co-regulated by multiple genes with diverse functions, and those genes abundantly expressed in Chisholm-T may play important roles in enhancing Al tolerance. The down-regulated genes in Chisholm-S may repress root growth and restrict uptake of essential nutrient elements, and lead to root senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260

    PubMed  CAS  Google Scholar 

  • Alvarado MC, Zsigmond LM, Kovacs I, Cseplo A, Koncz C, Szabados LM (2004) Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. Plant Physiol 134:18–27

    Article  PubMed  CAS  Google Scholar 

  • Anoop VM, Basu U, McCammon MT, McAlister-Henn L, Taylor GJ (2003) Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiol 132:2205–2217

    Article  PubMed  CAS  Google Scholar 

  • Ayoubi P, Jin X, Leite S, Liu X, Martajada J, Abduraham A, Wan Q, Yan W, Misawa E, Prade RA (2002) PipeOnline 2.0: automated EST processing and functional data sorting. Nucleic Acids Res 30:4761–4769

    Article  PubMed  CAS  Google Scholar 

  • Beck E, Ziegler P (1989) Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40:95–117

    Article  CAS  Google Scholar 

  • Brzobohatý B, Moore I, Kristoffersen P, Bako L, Campos N, Schell J, Palme K (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science 262:1051–1054

    Article  PubMed  Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Article  Google Scholar 

  • Conner AJ, Meredith CP (1985) Strategies for the selection and characterization of aluminum-resitant variants from cell cultures of Nicotiana plumbaginifolia. Planta 166:466–473

    Article  CAS  Google Scholar 

  • Cruz-Ortega R, Cushman JC, Ownby J (1997) cDNA clones encoding 1,3-β-glucanase and a fimbrin-like cytoskeletal protein are induced by Al toxicity in wheat roots. Plant Physiol 114:1453–1460

    Article  PubMed  CAS  Google Scholar 

  • Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB (2003) The pea gene NA encodes ent-kaurenoic acid oxidase. Plant Physiol 131:335–344

    Article  PubMed  CAS  Google Scholar 

  • de la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proc Natl Acad Sci USA 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993) Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    PubMed  CAS  Google Scholar 

  • Duroux D, Delmotte FM, Lancelin JM, Keravis G, Jay-Allemand C (1998) Insight into naphthoquinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojuglone β-D-glucopyranoside. Biochem J 333:275–283

    PubMed  CAS  Google Scholar 

  • Esen A, Blanchard J (2000) A specific β-glucosidase-aggregating factor is responsible for the β-glucosidase null phenotype in Maize. Plant Physiol 122:1–10

    Article  Google Scholar 

  • Etzler ME (1985) Plant lectins: molecular and biological aspects. Annu Rev Plant Physiol 36:209–234

    Article  CAS  Google Scholar 

  • Faivre-Nitschke SE, Couee I, Vermel M, Grienenberger JM, Gualberto JM (2001) Purification, characterization and cloning of isovaleryl-CoA dehydrogenase from higher plant mitochondria. Eur J Biochem 268:1332–1339

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Marzluf GA (1990) nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc Natl Acad Sci USA 87:5331–5335

    Article  PubMed  CAS  Google Scholar 

  • Garvin DF, Carver BF (2003) Role of genotypes tolerant of acidity and aluminum toxicity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker Inc., New York, pp 387–406

    Google Scholar 

  • Grossi M, Giuntini P, Mazzucotelli E, Crosatti C, Pistelli L, De Bellis L, Alpi A, Stanca AM, Cattivelli L (2003) Cloning and characterization of barley long chain acyl-CoA oxidase and its possible regulation by glucose. Physiol Plant 117:22–32

    Article  CAS  Google Scholar 

  • Hamilton CA, Good AG, Taylor GJ (2001) Induction of vacuolar ATPase and mitochondrial ATP synthase by aluminum in an aluminum-resistant cultivar of wheat. Plant Physiol 125:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Kader JC (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trends Plant Sci 2:66–70

    Article  Google Scholar 

  • Kalifa Y, Gilad A, Konrad Z, Zaccai M, Scolnik PA, Bar-Zvi D (2004) The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein. Biochem J 381:373–378

    Article  PubMed  CAS  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Klinge B, Lange T, Werr W (1997) The IBP genes of maize are expressed in non-meristematic, elongating cells of the seedling and in abortive floral organs. Mol Gen Genet 255:248–257

    Article  PubMed  CAS  Google Scholar 

  • Kochian LV, Hoekenga OA, Piñeros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  PubMed  CAS  Google Scholar 

  • Kristensen BK, Bloch H, Rasmussen SK (1999) Barley coleoptile peroxidases, molecular cloning, purification and induction by pathogens. Plant Physiol 120:501–512

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Lee JS, Bae EK, Choi YI, Noh EW (2005) Differential expression of a poplar copper chaperone gene in response to various abiotic stresses. Tree Physiol 25:395–401

    PubMed  CAS  Google Scholar 

  • Li XF, Ma JF, Matsumoto H (2000) Pattern of aluminum-induced secretion of organic acids differs between rye and wheat. Plant Physiol 123:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Bai G, Zhou L, Carver B (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar atlas 66. Theor Appl Genet 112:51–57

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Bai G, Lu W (2006) QTLs for aluminum tolerance in wheat cultivar Chinese spring. Plant Soil 283:239–249

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    Article  PubMed  CAS  Google Scholar 

  • Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 100:9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Milla MAR, Butler E, Huete AR, Wilson CF, Anderson O, Gustafson JP (2002) Expression sequence tag-based gene expression analysis under aluminum stress in rye. Plant Physiol 130:1706–1716

    Article  PubMed  CAS  Google Scholar 

  • Millar AH, Atkin OK, Menz RI, Henry B, Farquhar G, Day DA (1998) Analysis of respiratory chain regulation in roots of soybean seedlings. Plant Physiol 117:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Mira H, Martinez-Garcia F, Penarrubia L (2001) Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J 25:521–528

    Article  PubMed  CAS  Google Scholar 

  • Motoyama T, Kadokura K, Ohira T, Ichiishi A, Fujimura M, Yamaguchi I, Kudo T (2005) A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol 42:200–212

    Article  PubMed  CAS  Google Scholar 

  • Nagahashi G, Tu SI, Fleet G, Namgoong SN (1990) Inhibition of cell-wall associated enzymes in vitro and in vivo with sugar. Plant Physiol 92:413–418

    Article  PubMed  CAS  Google Scholar 

  • NDong C, Anzellotti D, Ibrahim RK, Huner NP, Sarhan F (2003) Daphnetin methylation by a novel O-methyltransferase is associated with cold acclimation and photosystem II excitation pressure in rye. J Biol Chem 278:6854–6861

    Article  PubMed  CAS  Google Scholar 

  • Negishi T, Nakanishi H, Yazaki J, Kishimoto N, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T, Kikuchi S, Mori S, Nishizawa NK (2002) cDNA microarray analysis of gene expression during Fe-deficiency stress in barley suggests that polar transport of vesicles is implicated in phytosiderophore secretion in Fe-deficient barley roots. Plant J 30:83–94

    Article  PubMed  CAS  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum-resistance mechanisms in wheat (roles of root apical phosphate and malate exudation). Plant Physiol 112:591–597

    PubMed  CAS  Google Scholar 

  • Peumans WJ, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352

    Article  PubMed  CAS  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Raman H, Zhang K, Cakir M, Appels R, Garvin DF, Maron LG, Kochian LV, Moroni JS, Raman R, Imtiaz M, Drake-Brockman F, Waters I, Martin P, Sasaki T, Yamamoto Y, Matsumoto H, Hebb DM, Delhaize E, Ryan PR (2005) Molecular characterization and mapping of ALMT1, the aluminium-tolerance gene of bread wheat (Triticum aestivum L.). Genome 48:781–791

    PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    Article  PubMed  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  PubMed  CAS  Google Scholar 

  • Samuels TD, Kucukakyuz K, Rincon-Zachary M (1997) Al partitioning patterns and root growth as related to Al sensitivity and Al tolerance in wheat. Plant Physiol 113:527–534

    PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Sauter M, Cornell KA, Beszteri S, Rzewuski G (2004) Functional analysis of methylthioribose kinase genes in plants. Plant Physiol 136:4061–4071

    Article  PubMed  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 Functions as a Proton-coupled Symporter for Phytosiderophore- and Nicotianamine-chelated Metals. J Biol Chem 279:9091–9096

    Article  PubMed  CAS  Google Scholar 

  • Schuler MA, Werck-Reichhart D (2003) Functional genomics of P450s. Annu Rev Plant Biol 54:629–667

    Article  PubMed  CAS  Google Scholar 

  • Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Hideo S, Matsumoto H (2005) Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H-ATPase. Plant Physiol 138:287–296

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  PubMed  CAS  Google Scholar 

  • Snowden KC, Gardner RC (1993) Five genes induced by aluminum in wheat (Triticum aestivum L.) roots. Plant Physiol 103:855–861

    Article  PubMed  CAS  Google Scholar 

  • Sottomayor M, Lopes Cardoso I, Pereira LG, Ros Barceló A (2004) Peroxidase and the biosynthesis of terpenoid indole alkaloids in the medicinal plant Catharanthus roseus (L.) G. Don. Phytochem Rev 3:159–171

    Article  CAS  Google Scholar 

  • Stukkens Y, Bultreys A, Grec S, Trombik T, Vanham D, Boutry M (2005) NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, play a major role in plant pathogen defense. Plant Physiol 139:341–352

    Article  PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology, 3rd edn. Sinauer Associates Publishers, Sunderland, MA

    Google Scholar 

  • Takita E, Koyama H, Hara T (1999) Organic acid metabolism in aluminum-phosphate utilizing cells of carrot (Daucus carota L.). Plant Cell Physiol 40:489–495

    CAS  Google Scholar 

  • Taylor GJ (1991) Current views of the aluminum stress response; the physiological basis of tolerance. Curr Top Plant Biochem Physiol 10:57–93

    CAS  Google Scholar 

  • Trevino MB, O’Connell MA (1998) Three drought-responsive members of the non-specific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol 116:1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Lagudah ES, Moose SP, Riechers DE (2002) Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat. Plant Physiol 130:362–373

    Article  PubMed  CAS  Google Scholar 

  • Yaxley JR, Ross JJ, Sherriff LJ, Reid JB (2001) Gibberellin biosynthesis mutations and root development in pea. Plant Physiol 125:627–633

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Drs. Patricia Ayoubi and Hua Wen for the technical assistance in array printing and data analysis. This paper reports the results of research only. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Bai.

Additional information

Communicated by J.-K. Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, P., Bai, G., Carver, B. et al. Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics 277, 1–12 (2007). https://doi.org/10.1007/s00438-006-0169-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0169-x

Keywords

Navigation