Skip to main content
Log in

Quantitative trait loci for aluminum resistance in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Quantitative trait loci (QTL) for wheat resistance to aluminum (Al) toxicity were analyzed using simple sequence repeats (SSRs) in a population of 192 F6 recombinant inbred lines (RILs) derived from a cross between an Al-resistant cultivar, Atlas 66 and an Al-sensitive cultivar, Chisholm. Wheat reaction to Al was measured by relative root growth and root response to hematoxylin stain in nutrient-solution culture. After screening 1,028 SSR markers for polymorphisms between the parents and bulks, we identified two QTLs for Al resistance in Atlas 66. One major QTL was mapped on chromosome 4D that co-segregated with the Al-activated malate transporter gene (ALMT1). Another minor QTL was located on chromosome 3BL. Together, these two QTLs accounted for about 57% of the phenotypic variation in hematoxylin staining score and 50% of the variation in net root growth (NRG). Expression of the minor QTL on 3BL was suppressed by the major QTL on 4DL. The two QTLs for Al resistance in Atlas 66 were also verified in an additional RIL population derived from Atlas 66/Century. Several SSR markers closely linked to the QTLs were identified and have potential to be used for marker-assisted selection (MAS) to improve Al-resistance of wheat cultivars in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anas, YT (2000) Screening of Al-tolerant sorghum by hematoxylin staining and growth response. Plant Prod Sci 3:246–253

    Article  Google Scholar 

  • Basu U, Goldbold D, Taylor GJ (1994) Aluminum resistance in Triticum aestivum associated with enhanced exudation of malate. J Plant Physiol 144:747–753

    CAS  Google Scholar 

  • Basu U, Good AG, Aung T, Slaski JJ, Basu A, Briggs KG, Taylor GJ (1999) A 23-kDa, root exudate polypeptide co-segregates with aluminum resistance in Triticum aestivum. Physiol Plant 106:53–61

    Article  CAS  Google Scholar 

  • Basu U, McDonald JL, Archamhault DJ, Good AG, Briggs KG, Aung T, Taylor GJ (1997) Genetic and physiological analysis of doubled-haploid, aluminum-resistant lines of wheat provide evidence for the involvement of a 23 kD, root exudate polypeptide in mediating resistance. Plant and Soil 196:283–288

    Article  CAS  Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in Atlas 66 wheat. Genome 35:689–693

    Google Scholar 

  • Bettinger CL, Zimmermann HW (1991) New investigations on hematoxylin, hematein, and hematein-aluminium complexes II. Hematein-aluminium complexes and hemalum staining. Histochemistry 96:215–228

    Article  PubMed  CAS  Google Scholar 

  • Cançado GMA, Loguercio LL, Martins PR, Parentoni SN, Paiva E, Borém A, Lopes MA (1999) Hematoxylin staining as a phenotypic index for aluminum tolerance selection in tropical maize (Zea mays L.). Theor App Genet 99:747–754

    Article  Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Article  Google Scholar 

  • Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC, Randall PJ (1993a) Aluminum tolerance in wheat (Triticum aestivum L.): uptake and distribution of aluminum in root apices. Plant Physiol 103:685–693

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Randall PJ (1993b) Aluminum tolerance in wheat (Triticum aestivum L.): aluminum-stimulated excretion of malic acid from root apices. Plant Physiol 103:695–702

    CAS  Google Scholar 

  • Delhaize E, Ryan PR, Hebb DM, Yamamoto Y, Sasaki T, Matsumoto H (2004) Engineering high-level aluminum tolerance in barley with the ALMT1 gene. PNAS 101:15249–15254

    Article  PubMed  CAS  Google Scholar 

  • Fisher JA, Scott BJ (1987) Response to selection for aluminum tolerance. In: Searle PGE, Davey BG (eds) Priorities in soil/plant relation. Research for plant production. The University of Sydney, Sydney, Australia, pp 135–137

    Google Scholar 

  • Foy CD, Armiger WH, Briggle LW, Reid DA (1965) Differential aluminum tolerance of wheat and barley varieties in acid soils. Agron J 66:751–758

    Article  Google Scholar 

  • Garvin DF, Carver BF (2003) Role of genotypes tolerant of acidity and aluminium toxicity. In: Rengel Z (ed) Handbook of soil acidity. Marcel Dekker Inc., New York, pp 387–406

    Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellite derived from Triticum taushchii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  CAS  Google Scholar 

  • Kerridge LV, Kronstad WE (1968) Evidence of genetic resistance to aluminum toxicity in wheat (Triticum aestivium L.). Agron J 60:710–711

    Article  Google Scholar 

  • Kidd PS, Llugany M, Poschenrieder C, Gunse B, Barcelo J (2001) The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J Exp Bot 52:1339–1352

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of Chinese Spring wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Ma H-X, Bai G-H, Carver BF, Zhou L-L (2005) Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112:51–57

    Article  PubMed  CAS  Google Scholar 

  • Milla MAR, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  PubMed  CAS  Google Scholar 

  • Ofei-Manu P, Wagatsuma T, Ishikawa S, Tawaraya K (2001) The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with al tolerance in several common woody plants. Soil Sci Plant Nutr 47:359–376

    CAS  Google Scholar 

  • Parker DR, Pedler JF (1998) Probing the “malate hypothesis” of differential aluminum tolerance in wheat by using other rhizotoxic ions as proxies for Al. Planta 205:389–396

    Article  CAS  Google Scholar 

  • Pellet DM, Papernik LA, Jones DL, Darrah PR, Grunes DL, Kochian LV (1997) Involvement of multiple aluminium exclusion mechanisms in aluminium tolerance in wheat. Plant Soil 192:63–68

    Article  CAS  Google Scholar 

  • Pellet DM, Papernik LA, Kochian LV (1996) Multiple aluminum resistance mechanisms in wheat: the roles of root apical phosphate and malate exudation. Plant Physiol 112:591–597

    PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of breed wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Roder MS, Korzum V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  CAS  Google Scholar 

  • Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Ezaki B, Matsumoto H (2002) A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol 43:177–185

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  PubMed  CAS  Google Scholar 

  • Scott JE, Willett IH (1966) Binding of cationic dyes to nucleic acids and other biological polyanions. Nature 209:985–987

    Article  PubMed  CAS  Google Scholar 

  • Silva IR, Smyth TJ, Moxley DF, Carter TE, Allen NS, Rufty TW (2000) Aluminum accumulation at nuclei of cells in the root tip. Fluorescence detection using lumogallion and confocal laser scanning microscopy. Plant Physiol 123:543–552

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Gustafson JP (1995) The expression of aluminum stress induced polypeptides in a population segregating for aluminum tolerance in wheat (Triticom aestivum L.). Genome 38:1213—1220

    CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivium L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot/Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiological genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Taylor GJ, Foy CD (1985) Mechanisms of aluminum tolerance in Triticum aestivum L. (wheat). I. Differential pH induced by winter cultivars in nutrient solutions. Am J Bot 72:695–701

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5. Kyazma BV, Wageningen, Netherlands

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap®3.0. PRI, Wageningen, Netherlands

    Google Scholar 

  • Vitorello VA, Capaldi FR, Stefanuto VA (2005) Recent advances in aluminum toxicity and resistance in higher plants. Braz J Plant Physiol 17:129–143

    Article  CAS  Google Scholar 

  • Von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

Download references

Acknowledgments

This paper reports the results of research only. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. This is contribution No. 06-294-J of the Kansas Agricultural Experiment Station, Manhattan, KS, U.S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Hua Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, LL., Bai, GH., Ma, HX. et al. Quantitative trait loci for aluminum resistance in wheat. Mol Breeding 19, 153–161 (2007). https://doi.org/10.1007/s11032-006-9054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9054-x

Keywords

Navigation