Skip to main content
Log in

Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Genetic improvement of aluminum (Al) tolerance is one of the cost-effective solutions to improve wheat (Triticum aestivum) productivity in acidic soils. The objectives of the present study were to identify quantitative trait loci (QTL) for Al-tolerance and associated PCR-based markers for marker-assisted breeding utilizing cultivar Atlas 66. A population of recombinant inbred lines (RILs) from the cross Atlas 66/Century was screened for Al-tolerance by measuring root-growth rate during Al treatment in hydroponics and root response to hematoxylin stain of Al treatment. After 797 pairs of SSR primers were screened for polymorphisms between the parents, 131 pairs were selected for bulk segregant analysis (BSA). A QTL analysis based on SSR markers revealed one QTL on the distal region of chromosome arm 4DL where a malate transporter gene was mapped. This major QTL accounted for nearly 50% of the phenotypic variation for Al-tolerance. The SSR markers Xgdm125 and Xwmc331 were the flanking markers for the QTL and have the potential to be used for high-throughput, marker-assisted selection in wheat-breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aniol A (1990) Genetics of tolerance to aluminum in wheat (Triticum aestivum L. Thell). Plant Soil 123:223–227

    Article  CAS  Google Scholar 

  • Aniol A, Gustafson JP (1984) Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can J Genet Cytol 26:701–705

    Article  Google Scholar 

  • Baier AC, Somers DJ, Gustafson JP (1995) Aluminum tolerance in wheat: Correlating hydoponic evaluation with field and soil performances. Plant Breed 114:292–296

    Article  Google Scholar 

  • Basu U, McDonald JL, Archamhault DJ, Good AG, Briggs KG, Aung T, Taylor GJ (1997) Genetic and physiological analysis of doubled-haploid, aluminum-resistant lines of wheat provide evidence for the involvement of a 23 kDa, root exudate polypeptide in mediating resistance. Plant Soil 196:283–288

    Article  CAS  Google Scholar 

  • Berzonsky WA (1992) The genomic inheritance of aluminum tolerance in ‘Atlas 66’ wheat. Genome 35:689–693

    Article  Google Scholar 

  • Camargo CEO (1981) Melhoramento do trigo. I: Heriditariedade de tolerancia a toxicidade do aluminio. Bragantia 40:33–45

    Article  Google Scholar 

  • Camargo CEO (1984) Melhoramento do trigo. VI: Heriditariedade de tolerancia a tres concentracoes de aluminio em solucao nutritive. Bragantia 40:279–291

    Article  Google Scholar 

  • Carver BF, Ownby JD (1995) Acid soil tolerance in wheat. Adv Agron 54:117–173

    Article  CAS  Google Scholar 

  • Carver BF, Whitmore WE, Smith EL, Bona L (1993) Registration of four aluminum-tolerant winter wheat germplasms and two susceptible near-isolines. Crop Sci 33:1113–1114

    Article  Google Scholar 

  • Foy CD, Armiger WH, Briggle LW, Reid DA (1965) Differential aluminum tolerance of wheat and barley varieties in acid soils. Agron J 66:751–758

    Article  Google Scholar 

  • Gupta PK, Balyan HS, Edwards, KJ, Isaac P, Korzun V, Roder M, Gautier MF, Joudrier P, Schlatter AR, Dubcovsky J, Pena RC, Khairallah M, Penner G, Hayden MJ, Sharp P, Keller B, Wang RCC, Hardouin JP, Jack P, Leroy P (2002) Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  CAS  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards KJ, Bernard M (2002) Studies of the transferability of microsatellite derived from Triticum taushchii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  Google Scholar 

  • Hoekenga OA, Vision TJ, Shaff JE, Monforte AJ, Lee GP, Howell SH, Kochian LV (2003) Identification and charcterization of aluminum tolerance loci in Arabidopsis (Landsberg erecta × Columbia) by quantitative trait locus mapping. A physiologically simple but genetically complex trait. Plant Physiol 132:936–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson T, Reisenauer H (1984) Crop response to lime in western United States. In: Adams F (ed) Soil acidity and liming. American Society of Agronomy, Crop Science Society of America, Soil society of America, Madison, WI, pp 333–347

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plant Physiol Mol Biol 46:237–260

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lafever HN, Campbell LG (1978) Inheritance of aluminum tolerance in wheat. Can J Gen Cytol 20:355–364

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daley MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Luo MC, Dvorak J (1996) Molecular mapping of an aluminum tolerance locus on chromosome 4D of CS wheat. Euphytica 91:31–35

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulk segregant analysis. A rapid method to detect markers in specific renomic regions by using sepregating population. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Papernik LA, Bethea AS, Singleton TE, Magalhaes JV, Garvin DF, Kochian LV (2001) Mechanistic basis of Al sensitivity in the ditelosomic lines of Chinese Spring wheat. Planta 212:829–834

    Article  CAS  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Roder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of breed wheat. Genome 43:689–697

    Article  CAS  PubMed  Google Scholar 

  • Polle E, Konzak CF, Kittrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots. Crop Sci 18:823–827

    Article  CAS  Google Scholar 

  • Prestes AM, Konzak CF, Hendrix JW (1975) An improved seedling culture method for screening wheat for tolerance to toxic levels of aluminum. In: Agronomy abstracts. ASA, Madison, WI, p 60

  • Riede CR, Anderson JA (1996) Linkage of RFLP markers to an aluminum tolerance gene in wheat. Crop Sci 36:905–909

    Article  Google Scholar 

  • Roder MS, Korzum V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez Milla MA, Gustafson JP (2001) Genetic and physical characterization of chromosome 4DL in wheat. Genome 44:883–892

    Article  Google Scholar 

  • Saghai-Maroof MA, Soliman K, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samac DA, Tesfaye M (2003) Plant improvement for tolerance to aluminum in acid soil-a review. Plant Cell Tissue Organ Cult 75:189–207

    Article  CAS  Google Scholar 

  • SAS institute Inc. (1989) SAS/STAT user’s guide, Version 6, 4th edn. Cary, NC

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Gustafson JP (1995) The expression of aluminum stress induced polypeptides in a population segregating for aluminum tolerance in wheat (Triticom aestivum L.). Genome 38:1213–1220

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Briggs KG, Gustafson JP (1996) Aluminum stress and protein synthesis in near isogenic lines of Triticum aestivum differing in aluminum tolerance. Physiol Plant 97:694–700

    Article  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G., Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot×Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    CAS  PubMed  Google Scholar 

  • Tang Y, Garvin DF, Kochian LV, Sorrells ME, Carver BF (2002) Physiology genetics of aluminum tolerance in the wheat cultivar Atlas 66. Crop Sci 42:1541–1546

    Article  Google Scholar 

  • Von Uexkull HR, Mutert E (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant–soil interactions at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, pp 5–19

    Chapter  Google Scholar 

  • Wood S, Seastian K, Scherr S (2000) Soil resource condition. In: Pilot analysis of global ecosystems. International Food Policy Research Institute and The World Resources Institute, Washington, DC, pp 45–54

Download references

Acknowledgements

This paper reports the results of research only. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. This is contribution No. 05-78-J of the Kansas Agricultural Experiment Station, Manhattan, KS, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.-H. Bai.

Additional information

Communicated by D. Hoisington

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, HX., Bai, GH., Carver, B.F. et al. Molecular mapping of a quantitative trait locus for aluminum tolerance in wheat cultivar Atlas 66. Theor Appl Genet 112, 51–57 (2005). https://doi.org/10.1007/s00122-005-0101-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-005-0101-5

Keywords

Navigation