Skip to main content
Log in

Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

In this study, we used phenotypic and genetic analysis to investigate Double haploid (DH) lines derived from normal corn parents (HF1 and 11S6169). DH technology offers an array of advantages in maize genetics and breeding as follows: first, it significantly shortens the breeding cycle by development of completely homozygous lines in two or three generations; and second, it simplifies logistics, including requiring less time, labor, and financial resources for developing new DH lines compared with the conventional RIL population development process.

Objectives

In our study, we constructed a maize genetic linkage map using SSR markers and a DH population derived from a cross of normal corn (HF1) and normal corn (11S6169).

Methods

The DH population used in this study was developed by the following methods: we crossed normal corn (HF1) and normal corn (11S6169), which are parent lines of a normal corn cultivar, in 2014; and the next year, the F1 hybrids were crossed with a tropicalized haploid inducer line (TAIL), which is homozygous for the dominant marker gene R1-nj (Nanda and Chase in Crop Sci 6:213–215, 1966), and we harvested seeds of the haploid lines.

Results

A total of 200 SSR markers were assigned to 10 linkage groups that spanned 1145.4 cM with an average genetic distance between markers of 5.7 cM. 68 SSR markers showed Mendelian segregation ratios in the DH population at a 5% significance threshold. A total of 15 quantitative trait loci (QTLs) for plant height (PH), ear height (EH), ear height ratio (ER), leaf length (LL), ear length (EL), set ear length (SEL), set ear ratio (SER), ear width (EW), 100 kernel weight (100 KW), and cob color (CC) were found in the 121 lines in the DH population.

Conclusion

The results of this study may help to improve the detection and characterization of agronomic traits and provide great opportunities for maize breeders and researchers using a DH population in maize breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akagi H, Yokozaki Y, Inagaki A, Fujimura T (1997) Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet 94:61–67

    Article  CAS  PubMed  Google Scholar 

  • Ali ML, Taylor JH, Jie L, Sun G, William M, Kasha KJ, Reid LM, Pauls KP (2005) Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum. Genome 48:521–533

    Article  CAS  PubMed  Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583–600

    Article  CAS  PubMed  Google Scholar 

  • Alvi S, Tuberosa R (2005) To clone or not to clone plant QTL: present and future challenges. Trends in Plant Sci 10:297–304

    Article  CAS  Google Scholar 

  • Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Chu Q, Gu R, Yuan L, Liu J, Zhang X, Chen F, Mi G, Zhang F (2012) Identification of QTLs for plant height, ear height and grain yield in maize (Zea mays L.) in response to nitrogen and phosphorus supply. Plant Breed 131:502–510

    Article  CAS  Google Scholar 

  • Chang MT, Coe EH (2009) Doubled haploids. In: Kriz AL, Larkins BA (eds) Biotechnology in agriculture and forestry. Vol. 63. molecular genetic approaches to maize improvement, vol 63. Springer, Berlin, pp 127–142

    Chapter  Google Scholar 

  • Choe ES, Rocheford TR (2012) Genetic and QTL analysis of pericarp thickness and ear architecture traits of Korean waxy corn germplasm. Euphytica 183:243–260

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cui TT, He KH, Chang LG, Zhang XH, Xue JQ, Liu JC (2017) QTL mapping for leaf area in maize (Zea mays L.) under multi-environments. J Integ Agri 16:800–808

    Article  Google Scholar 

  • Danson J, Lagat M, Kimani M, Kuria A (2008) Quantitative trait loci (QTLs) for resistance to gray leaf spot and common rust diseases of maize. Afr J Biotech 7:3247–3254

    CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A simple and rapid method for plant DNA preparation, Version II. Plant Mol Bio Rep 1:19–21

    Article  CAS  Google Scholar 

  • Ding D, Li W, Song G, Qi H, Liu J, Tang J (2011a) Identification of QTLs for arsenic accumulation in maize (Zea mays L.) using a RIL population. PLoS One 6:e25646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding JQ, Ma JL, Zhang CR, Dong HF, Xi ZY, Xia ZL, Wu JY (2011b) QTL mapping for test weight by using F2:3 population in maize. J Genet 90:75–80

    Article  PubMed  Google Scholar 

  • Duvick DN (2005) The contribution of breeding to yield advances in maize (Zea mays L.). Adv Agron 86:83–145

    Article  Google Scholar 

  • Duvick DN, Smith JSC, Cooper RM (2004) Long-term selection in a commercial hybrid maize breeding program. Plant Breed Rev 24:109–151

    Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. Plant Breed Rev 25:57–88

    CAS  Google Scholar 

  • Frascaroli E, Canè MA, Landi P, Pea G, Gianfranceschi L, Villa M, Morgante M, Pè ME (2007) Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics 176:625–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardiner JM, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger HH (2009) Doubled haploids. In: Bennetzen JL, Hake S (eds) Maize handbook-volume II; genetics and genomics. Springer, New York, pp 641–657

    Google Scholar 

  • Geiger HH, Gordillo GA (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Guo Y, Yang X, Chander S, Yan J, Zhang J, Song T, Li J (2013) Identification of unconditional and conditional QTL for oil, protein and starch content in maize. Crop J 1:34–42

    Article  Google Scholar 

  • Jiang L, Ge M, Zhao H, Zhang T (2015) Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize. PLoS One 10:e0124779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Landi P, Albrecht B, Giuliani MM, Sanguineti MC (1998) Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging. Maydica 43:111–116

    Google Scholar 

  • Lechelt C, Peterson T, Laird A, Chen J, Dellaporta SL, Dennis E, Peacock W, Starlinger P (1989) Isolation and molecular analysis of the maize P locus. Mol Gene Genet 219:225–234

    CAS  Google Scholar 

  • Lee JK, Park JY, Kim JH, Kwon SJ, Shin JH, Hong SK, Min HK, Kim NS (2006) Genetic mapping of the Isaac-CACTA transposon in maize. Theor Appl Genet 113:16–22

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Li XH, Li JZ, Fu JF, Wang YZ, Wei MG (2009) Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize. Euphytica 169:273–284

    Article  Google Scholar 

  • Li JZ, Zhang ZW, Li YL, Wang QL, Zhou YG (2011a) QTL consistency and meta-analysis for grain yield components in three generations in maize. Theor Appl Genet 122:771–782

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Ma XL, Wang TY, Li YX, Liu C, Liu ZZ, Sun BC, Shi YS, Song YC, Carlone M, Bubeck D, Bhardwaj H, Whitaker D, Wilson W, Jones E, Wright K, Sun SK, Niebur W, Smith S (2011b) Increasing maize productivity in China by planting hybrids with germplasm that responds favorably to higher planting densities. Crop Sci 51:2391–2400

    Article  Google Scholar 

  • Lu GH, Tang JH, Yan JB, Ma XQ, Li JS, Chen SJ, Ma JC, Liu ZX, Zhang YR, Dai JR (2006) Quantitative trait loci mapping of maize yield and its components under different water treatments at flowering time. J Integr Plant Biol 48:1233–1243

    Article  CAS  Google Scholar 

  • Liu G, Bernhardt JL, Jia MH, Wamishe YA, Jia Y (2008) Molecular characterization of the recombinant inbred line population derived from a japonica–indica rice cross. Euphytica 159:73–82

    Article  CAS  Google Scholar 

  • Liu XH, He SL, Zheng ZP, Huang YB, Tan ZB, Wu X (2010) QTL identification for row number per ear and grain number per row in maize. Maydica 55:127–133

    Google Scholar 

  • Liu ZH, Ji HQ, Cui ZT, Wu X, Duan LJ, Feng XX, Tang JH (2011) QTL detected for grain-filling rate in maize using a RIL population. Mol Breed 27:25–36

    Article  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Meng Q, Zheng F, Kong L, Yuan J, Lübberstedt T (2017) Genetic mapping of QTL for maize leaf width combining RIL and IF2 populations. PLoS One 12:e0189441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH population. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Lu B, Xie K, Yang C, Zhang L, Wu T, Li L, Liu X, Jiang L, Wan J (2011) Efficient QTL detection for heading date in backcross inbred line and F2 population derived from the same rice cross. Afr J Agri Res 6:2372–2378

    Google Scholar 

  • Lübberstedt T, Melchinger AE, Fahr S, Klein D, Dally A, Westhoff P (1998) QTL mapping in testcrosses of flint lines of maize: III. Comparison across populations for forage traits. Crop Sci 38:1278–1289

    Article  Google Scholar 

  • Mclntyre CL, Mathews KL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541

    Article  CAS  Google Scholar 

  • Meyer J, Snook M, Houchins K, Rector B, Widstrom N, McMullen M (2007) Quantitative trait loci for maysin synthesis in maize (Zea mays L.) lines selected for high silk maysin content. Theor Appl Genet 115:119–128

    Article  CAS  PubMed  Google Scholar 

  • Nanda DK, Chase SS (1966) An embryo marker for detecting monoploids of maize (Zea mays L.). Crop Sci 6:213–215

    Article  Google Scholar 

  • Park YJ, Lee JK, Kim NS (2009) Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14:4546–4569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park KJ, Sa KJ, Kim BY, Koh HJ, Lee JK (2014) Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3 population derived from a waxy corn x sweet corn cross. Genes Genomics 36:179–189

    Article  Google Scholar 

  • Prasanna BM, Chaikam V, Mahuku G (eds) (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, D.F.

    Google Scholar 

  • Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN, Melchinger AE (2012) New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190:781–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu F, Zheng Y, Zhang Z, Xu S (2007) Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Anna Botany 99:1067–1081

    Article  Google Scholar 

  • Röber FK, Gordillo GA, Geiger HH (2005) In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50:275–283

    Google Scholar 

  • Ryu SH, Park JY, Huh NK, Min HK (2001) Relationship between genetic distance and hybrid performance of black waxy corn (Zea mays L.). Korean J Breed Sci 33:95–103

    Google Scholar 

  • Sa KJ, Park JY, Park KC, Lee JK (2012) Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes Genomics 34:157–164

    Article  CAS  Google Scholar 

  • Sa KJ, Park JY, Woo SY, Ramekar RV, Jang CS, Lee JK (2015) Mapping of QTL traits in corn using a RIL population derived from a cross of dent corn x waxy corn. Genes Genomics 37:1–14

    Article  Google Scholar 

  • Sabadin PK, Souza JCL, Souza AP, Garcia AAF (2008) QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145:194–203

    Article  Google Scholar 

  • Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti MC, Castelletti S, Tuberosa R (2011) Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol 11:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) Principle, requirements and prospects of genetic mapping in plants. Afr J Biotech 5:2569–2587

    CAS  Google Scholar 

  • Tang JH, Teng WT, Yan JB, Ma XQ, Meng YJ, Dai JR, Li JS (2007) Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize. Euphytica 155:117–124

    Article  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  PubMed  Google Scholar 

  • Troyer AF, Larkins JR (1985) Selection for early flowering in corn: 10 late synthetics. Crop Sci 25:695–697

    Article  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) User manual for QTL mapper version 1.0, pp 1–57

  • Wang C, Chen Y, Ku L, Wang T, Sun Z, Cheng F, Wu L (2010) Mapping QTL associated with photoperiod sensitivity and assessing the importance of QTL × environment interaction for flowering time in maize. PLoS One 5:e14068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang TY, Ma XL, Li Y, Bai DP, Liu C, Liu ZZ, Tan XJ, Shi YS, Song YC, Carlone M, Bubeck D, Bhardwaj H, Jones E, Wright K, Smith S (2011) Changes in yield and yield components of single-cross maize hybrids released in China between 1964 and 2000. Crop Sci 51:512–525

    Article  Google Scholar 

  • Wang G, He QQ, Xu ZK, Song RT (2012) High segregation distortion in maize B73 x teosinte crosses. Genet Mol Res 11:693–706

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liang Q, Li K, Hu X, Wu Y, Wang H, Liu Z, Huang C (2017) QTL analysis of ear leaf traits in maize (Zea mays L.) under different planting densities. Crop J 5:387–395

    Article  Google Scholar 

  • Wei M, Fu J, Li X, Wang Y, Li Y (2009) Influence of dent corn genetic backgrounds on QTL detection for plant-height traits and their relationships in high-oil maize. J Appl Genet 50:225–234

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Takeuchi Y, Tanaka I, Kono I, Murai K, Yano M (2010) Segregation distortion in F2 and doubled haploid populations of temperate japonica rice. J Genet 89:237–241

    Article  PubMed  Google Scholar 

  • Yang DE, Jin DM, Wang B, Zhang DS, Nguyen HT, Zhang CL, Chen SJ (2005) Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize. Mol Genet Genet 274:229–234

    Article  CAS  Google Scholar 

  • Yang G, Li Y, Wang Q, Zhou Y, Zhou Q, Shen B, Zhang F, Liang X (2012) Detection and integration of quantitative trait loci for grain yield components and oil content in two connected recombinant inbred line populations of high-oil maize. Mol Breed 29:313–333

    Article  CAS  Google Scholar 

  • Young ND (1995) Isolation and cloning of plant disease resistance genes. In: Singh RP, Singh US (eds) Molecular methods in plant pathology. Lewis, Boca Raton, pp 221–234

    Google Scholar 

  • Yu J, Arbelbide M, Bernardo R (2005) Power of in silico QTL mapping from phenotypic, pedigree, and marker data in a hybrid breeding program. Theor Appl Genet 110:1061–1067

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZM, Zhao MJ, Ding HP, Rong TZ, Pan GT (2006) Quantitative trait loci analysis of plant height and ear height in maize (Zea mays L.). Rus J Genet 42:306–310

    Article  CAS  Google Scholar 

  • Zhang X, Tang B, Liang W, Zheng Y, Qiu F (2011a) Quantitative genetic analysis of flowering time, leaf number and photoperiod sensitivity in maize (Zea mays L.). J Plant Breed Crop Sci 3:168–184

    CAS  Google Scholar 

  • Zhang Y, Li Y, Wang Y, Peng B, Liu C, Liu Z, Tan W, Wang D, Shi Y, Sun B, Song Y, Wang T, Li Y (2011b) Correlations and QTL detection in maize family per se and testcross progenies for plant height and ear height. Plant Breed 130:617–624

    Article  Google Scholar 

  • Zhao X, Peng Y, Zhang J, Fang P, Wu B (2018) Identification of QTLs and meta-QTLs for seven agronomic traits in multiple maize populations under well-watered and water-stressed conditions. Crop Sci 58:507–520

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Cooperative Research Program for Agriculture Science and Technology Development (Project title #PJ013157012018, Project #PJ013308012018), Rural Development Administration, Republic of Korea, and the Golden Seed Project (No. 213009-05-1-WT821, PJ012650012017), Ministry of Agriculture, Food, and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA), and Korea Forest Service (KFS), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Kyong Lee.

Ethics declarations

Conflict of interest

Jae-Keun Choi declares that he has no conflict of interest. Kyu Jin Sa declares that he has no conflict of interest. Dae Hyun Park declares that he has no conflict of interest. Su Eun Lim declares that she has no conflict of interest. Si-Hwan Ryu declares that he has no conflict of interest. Jong Yeol Park declares that he has no conflict of interest. Ki Jin Park declares that he has no conflict of interest. Hae-Ik Rhee declares that he has no conflict of interest. Mijeong Lee declares that she has no conflict of interest. Ju Kyong Lee declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human subjects or animals performed by any of the above authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JK., Sa, K.J., Park, D.H. et al. Construction of genetic linkage map and identification of QTLs related to agronomic traits in DH population of maize (Zea mays L.) using SSR markers. Genes Genom 41, 667–678 (2019). https://doi.org/10.1007/s13258-019-00813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00813-x

Keywords

Navigation