Skip to main content
Log in

Hämodynamisches Monitoring in der perioperativen Phase

Verfügbare Systeme, praktische Anwendung und klinische Daten

Haemodynamic monitoring in the perioperative phase

Available systems, practical application and clinical data

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Ein regulärer Hydratationsstatus und Normovolämie sind Ziele der intra-/perioperativen Flüssigkeits- sowie Volumentherapie und gleichzeitig Voraussetzungen für eine adäquate Hämodynamik zur Sicherstellung einer ausreichenden Gewebeoxygenierung. Die physiologischen und pathophysiologischen Effekte der Flüssigkeits- und Volumentherapie beruhen auf den pharmakologischen Eigenschaften der verwendeten Infusionslösung, dem applizierten Volumen und – nach neueren Erkenntnissen – auch auf dem Zeitpunkt der Flüssigkeitsgabe. In der perioperativen Phase unterliegt der Organismus den hormonellen Bedingungen der metabolischen Stressantwort, die neben den perioperativen Änderungen der Gefäßpermeabilität zu berücksichtigen sind. Das Ziel des hämodynamischen Monitorings im OP ist es, Informationen über die Hämodynamik und das globale Sauerstoffangebot zu gewinnen, die eine Abschätzung des intravasalen Volumenstatus des Patienten erlauben. Dies kann die Volumen- und Flüssigkeitstherapie im Sinne einer Konstanthaltung des Herzzeitvolumens verbessern, das vor allen Dingen für Risikopatienten relevant ist. Eine verbesserte und hypovoläme Zustände vermeidende Volumentherapie kann das postoperative Outcome der Patienten positiv beeinflussen. Ziel dieser Arbeit ist es, dem Leser einen Überblick über die aktuell im klinischen Alltag zur Verfügung stehenden Monitoringverfahren zur Einschätzung des perioperativen Volumenstatus zu geben; hierzu werden jeweils das Messprinzip, die Messparameter sowie die Vor- und Nachteile des jeweiligen Verfahrens dargestellt. Weiter wird diskutiert, welche Monitoringverfahren in klinischen Studien schon zur zielgerichteten perioperativen Flüssigkeits- und Volumentherapie („goal-directed therapy“) untersucht wurden.

Abstract

A regular hydration status and compensated vascular filling are targets of perioperative fluid and volume management and, in parallel, represent precautions for sufficient stroke volume and cardiac output to maintain tissue oxygenation. The physiological and pathophysiological effects of fluid and volume replacement mainly depend on the pharmacological properties of the solutions used, the magnitude of the applied volume as well as the timing of volume replacement during surgery. In the perioperative setting surgical stress induces physiological and hormonal adaptations of the body, which in conjunction with an increased permeability of the vascular endothelial layer influence fluid and volume management. The target of haemodynamic monitoring in the operation room is to collect data on haemodynamics and global oxygen transport, which enable the anaesthetist to estimate the volume status of the vascular system. Particularly in high risk patients this may improve fluid and volume therapy with respect to maintaining cardiac output. A goal-directed volume management aiming at preventing hypovolaemia may improve the outcome after surgery. The objective of this article is to review the monitoring devices that are currently used to assess haemodynamics and filling status in the perioperative setting. Methods and principles for measuring haemodynamic variables, the measured and calculated parameters as well as clinical benefits and shortcomings of each device are described. Furthermore, the results for monitoring devices from clinical studies of goal-directed fluid and volume therapy which have been published will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  1. Adams HA, Piepenbrock S, Hempelmann G (1998) Volume replacement solutions – pharmacology and clinical use. Anasthesiol Intensivmed Notfallmed Schmerzther 33:2–17

    Article  PubMed  CAS  Google Scholar 

  2. Adamson RH, Lenz JF, Zhang X et al (2004) Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol 557:889–907

    Article  PubMed  CAS  Google Scholar 

  3. American Society of Anesthesiologists Task Force on Pulmonary Artery Catheterization (1993) Practice guidelines for pulmonary artery catheterization. Anesthesiology 78:380–394

    Article  Google Scholar 

  4. Appleyard RF, Glantz SA (1990) Two dimensions describe left ventricular volume change during hemodynamic transients. Am J Physiol 258:H277–H284

    PubMed  CAS  Google Scholar 

  5. Aranda M, Mihm FG, Garrett S et al (1998) Continuous cardiac output catheters: delay in in-vitro response time after controlled flow changes. Anesthesiology 89:1592–1595

    Article  PubMed  CAS  Google Scholar 

  6. Arieff AI (1999) Fatal postoperative pulmonary edema: pathogenesis and literature review. Chest 115:1371–1377

    Article  PubMed  CAS  Google Scholar 

  7. Baillard C, Cohen Y, Fosse JP et al (1999) Haemodynamic measurements (continuous cardiac output and systemic vascular resistance) in critically ill patients: transoesophageal Doppler versus continuous thermodilution. Anaesth Intensive Care 27:33–37

    PubMed  CAS  Google Scholar 

  8. Berkenstadt H, Margalit N, Hadani M et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92:984–989

    Article  PubMed  CAS  Google Scholar 

  9. Bernardin G, Tiger F, Fouche R, Mattei M (1998) Continuous noninvasive measurement of aortic blood flow in critically ill patients with a new esophageal echo-Doppler system. J Crit Care 13:177–183

    Article  PubMed  CAS  Google Scholar 

  10. Biais M, Nouette-Gaulain K, Cottenceau V et al (2008) Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth 101:761–768

    Article  PubMed  CAS  Google Scholar 

  11. Biancofiore G, Critchley LA, Lee A et al (2009) Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery. Br J Anaesth 102:47–54

    Article  PubMed  CAS  Google Scholar 

  12. Boussat S, Jacques T, Levy B et al (2002) Intravascular volume monitoring and extravascular lung water in septic patients with pulmonary edema. Intensive Care Med 28:712–718

    Article  PubMed  Google Scholar 

  13. Boyd O, Grounds RM, Bennett ED (1993) A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 270:2699–2707

    Article  PubMed  CAS  Google Scholar 

  14. Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648

    Article  PubMed  Google Scholar 

  15. Breukers RM, Trof RJ, de Wilde RB et al (2009) Relative value of pressures and volumes in assessing fluid responsiveness after valvular and coronary artery surgery. Eur J Cardiothorac Surg 35:62–68

    Article  PubMed  Google Scholar 

  16. Bruch C, Comber M, Schmermund A et al (2003) Diagnostic usefulness and impact on management of transesophageal echocardiography in surgical intensive care units. Am J Cardiol 91:510–513

    Article  PubMed  Google Scholar 

  17. Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993–H1999

    Article  PubMed  CAS  Google Scholar 

  18. Button D, Weibel L, Reuthebuch O et al (2007) Clinical evaluation of the FloTrac/Vigileo system and two established continuous cardiac output monitoring devices in patients undergoing cardiac surgery. Br J Anaesth 99:329–336

    Article  PubMed  CAS  Google Scholar 

  19. Chappell D, Jacob M, Becker BF et al (2008) Expedition glycocalyx. A newly discovered „Great Barrier Reef“. Anaesthesist 57:959–969

    Article  PubMed  CAS  Google Scholar 

  20. Chawla LS, Zia H, Gutierrez G et al (2004) Lack of equivalence between central and mixed venous oxygen saturation. Chest 126:1891–1896

    Article  PubMed  Google Scholar 

  21. Clements FM, Harpole DH, Quill T et al (1990) Estimation of left ventricular volume and ejection fraction by two-dimensional transoesophageal echocardiography: comparison of short axis imaging and simultaneous radionuclide angiography. Br J Anaesth 64:331–336

    Article  PubMed  CAS  Google Scholar 

  22. Cohen GI, White M, Sochowski RA et al (1995) Reference values for normal adult transesophageal echocardiographic measurements. J Am Soc Echocardiogr 8:221–230

    Article  PubMed  CAS  Google Scholar 

  23. Collins JV, Cochrane GM, Davis J et al (1973) Some aspects of pulmonary function after rapid saline infusion in healthy subjects. Clin Sci Mol Med 45:407–410

    PubMed  CAS  Google Scholar 

  24. Connors AF Jr, Speroff T, Dawson NV et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 276:889–897

    Article  PubMed  Google Scholar 

  25. Conway DH, Mayall R, Abdul-Latif MS et al (2002) Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia 57:845–849

    Article  PubMed  CAS  Google Scholar 

  26. Costachescu T, Denault A, Guimond JG et al (2002) The hemodynamically unstable patient in the intensive care unit: hemodynamic vs. transesophageal echocardiographic monitoring. Crit Care Med 30:1214–1223

    Article  PubMed  Google Scholar 

  27. Cote G, Denault A (2008) Transesophageal echocardiography-related complications. Can J Anaesth 55:622–647

    Article  PubMed  Google Scholar 

  28. Dalen JE, Bone RC (1996) Is it time to pull the pulmonary artery catheter? JAMA 276:916–918

    Article  PubMed  CAS  Google Scholar 

  29. Dark PM, Singer M (2004) The validity of trans-esophageal Doppler ultrasonography as a measure of cardiac output in critically ill adults. Intensive Care Med 30:2060–2066

    Article  PubMed  Google Scholar 

  30. De Castro V, Goarin JP, Lhotel L et al (2006) Comparison of stroke volume (SV) and stroke volume respiratory variation (SVV) measured by the axillary artery pulse-contour method and by aortic Doppler echocardiography in patients undergoing aortic surgery. Br J Anaesth 97:605–610

    Article  Google Scholar 

  31. de Waal EE, Kalkman CJ, Rex S, Buhre WF (2007) Validation of a new arterial pulse contour-based cardiac output device. Crit Care Med 35:1904–1909

    Article  Google Scholar 

  32. Della Rocca G, Costa MG (2008) Preload index and fluid responsiveness: different aspects of the new concept of functional hemodynamic monitoring. Minerva Anestesiol 74:349–351

    Google Scholar 

  33. Della Rocca G, Costa MG, Pompei L et al (2002) Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 88:350–356

    Article  Google Scholar 

  34. Denault AY, Couture P, McKenty S et al (2002) Perioperative use of transesophageal echocardiography by anesthesiologists: impact in noncardiac surgery and in the intensive care unit. Can J Anaesth 49:287–293

    Article  PubMed  Google Scholar 

  35. Desborough JP (2000) The stress response to trauma and surgery. Br J Anaesth 85:109–117

    Article  PubMed  CAS  Google Scholar 

  36. Diaz Fernandez A, Benitez D, Sanchez Tello G, Marquez LA (1979) Measurement of cardiac output by thermodilution with a diode as a temperature sensor. Prensa Med Mex 44:45–52

    Google Scholar 

  37. DiCorte CJ, Latham P, Greilich PE et al (2000) Esophageal Doppler monitor determinations of cardiac output and preload during cardiac operations. Ann Thorac Surg 69:1782–1786

    Article  PubMed  CAS  Google Scholar 

  38. Donati A, Loggi S, Preiser JC et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132:1817–1824

    Article  PubMed  Google Scholar 

  39. Dueck MH, Klimek M, Appenrodt S et al (2005) Trends but not individual values of central venous oxygen saturation agree with mixed venous oxygen saturation during varying hemodynamic conditions. Anesthesiology 103:249–257

    Article  PubMed  Google Scholar 

  40. Felbinger TW, Reuter DA, Eltzschig HK et al (2005) Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth 17:241–248

    Article  PubMed  Google Scholar 

  41. Flachskampf FA, Decoodt P, Fraser AG et al (2001) Guidelines from the working group. Recommendations for performing transesophageal echocardiography. Eur J Echocardiogr 2:8–21

    PubMed  CAS  Google Scholar 

  42. Fujita Y, Yamamoto T, Sano I et al (2004) A comparison of changes in cardiac preload variables during graded hypovolemia and hypervolemia in mechanically ventilated dogs. Anesth Analg 99:1780–1786, table of contents

    Article  PubMed  Google Scholar 

  43. Gan TJ, Soppitt A, Maroof M et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97:820–826

    Article  PubMed  Google Scholar 

  44. Gattinoni L, Brazzi L, Pelosi P et al (1995) A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333:1025–1032

    Article  PubMed  CAS  Google Scholar 

  45. Gawlinski A (1998) Can measurement of mixed venous oxygen saturation replace measurement of cardiac output in patients with advanced heart failure? Am J Crit Care 7:374–380; quiz 381–372

    PubMed  CAS  Google Scholar 

  46. Godje O, Hoke K, Lamm P et al (1998) Continuous, less invasive, hemodynamic monitoring in intensive care after cardiac surgery. Thorac Cardiovasc Surg 46:242–249

    Article  PubMed  CAS  Google Scholar 

  47. Godje O, Peyerl M, Seebauer T et al (1998) Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113:1070–1077

    Article  PubMed  CAS  Google Scholar 

  48. Goedje O, Seebauer T, Peyerl M et al (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118:775–781

    Article  PubMed  CAS  Google Scholar 

  49. Goepfert MS, Reuter DA, Akyol D et al (2007) Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med 33:96–103

    Article  PubMed  Google Scholar 

  50. Goldman RH, Klughaupt M, Metcalf T (1968) Measurement of central venous oxygen saturation in patients with myocarial infarction. Circulation 38:941–946

    PubMed  CAS  Google Scholar 

  51. Grebe D, Sander M, von Heymann C et al (2006) Fluid therapy – pathophysiological principles as well as intra- and perioperative monitoring. Anasthesiol Intensivmed Notfallmed Schmerzther 41:392–398; quiz 399

    Article  PubMed  Google Scholar 

  52. Grocott MP, Mythen MG, Gan TJ (2005) Perioperative fluid management and clinical outcomes in adults. Anesth Analg 100:1093–1106

    Article  PubMed  Google Scholar 

  53. Gudmundsson FF, Gislason HG, Dicko A et al (2001) Effects of prolonged increased intra-abdominal pressure on gastrointestinal blood flow in pigs. Surg Endosc 15:854–860

    Article  PubMed  CAS  Google Scholar 

  54. Hachenberg T, Grundling M (1999) Acute failure of the intestinal barrier – pathophysiology, diagnosis, prophylaxis and therapy. Anaesthesiol Reanim 24:4–12

    PubMed  CAS  Google Scholar 

  55. Halvorsen PS, Sokolov A, Cvancarova M et al (2007) Continuous cardiac output during off-pump coronary artery bypass surgery: pulse-contour analyses vs pulmonary artery thermodilution. Br J Anaesth 99:484–492

    Article  PubMed  CAS  Google Scholar 

  56. Hamilton-Davies C, Mythen MG, Salmon JB et al (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23:276–281

    Article  PubMed  CAS  Google Scholar 

  57. Hamilton TT, Huber LM, Jessen ME (2002) PulseCO: a less-invasive method to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg 74:S1408–S1412

    Article  PubMed  Google Scholar 

  58. Hansen RM, Viquerat CE, Matthay MA et al (1986) Poor correlation between pulmonary arterial wedge pressure and left ventricular end-diastolic volume after coronary artery bypass graft surgery. Anesthesiology 64:764–770

    Article  PubMed  CAS  Google Scholar 

  59. Harvey S, Young D, Brampton W et al (2006) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev 3:CD003408

    PubMed  CAS  Google Scholar 

  60. Heyland DK, Cook DJ, King D et al (1996) Maximizing oxygen delivery in critically ill patients: a methodologic appraisal of the evidence. Crit Care Med 24:517–524

    Article  PubMed  CAS  Google Scholar 

  61. Hofer CK, Furrer L, Matter-Ensner S et al (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94:748–755

    Article  PubMed  CAS  Google Scholar 

  62. Hofer CK, Ganter MT, Matter-Ensner S et al (2006) Volumetric assessment of left heart preload by thermodilution: comparing the PiCCO-VoLEF system with transoesophageal echocardiography. Anaesthesia 61:316–321

    Article  PubMed  CAS  Google Scholar 

  63. Hofer CK, Muller SM, Furrer L et al (2005) Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 128:848–854

    Article  PubMed  Google Scholar 

  64. Holte K, Foss NB, Andersen J et al (2007) Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth 99:500–508

    Article  PubMed  CAS  Google Scholar 

  65. Holte K, Jensen P, Kehlet H (2003) Physiologic effects of intravenous fluid administration in healthy volunteers. Anesth Analg 96:1504–1509, table of contents

    Article  PubMed  Google Scholar 

  66. Holte K, Klarskov B, Christensen DS et al (2004) Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg 240:892–899

    Article  PubMed  Google Scholar 

  67. Holte K, Sharrock NE, Kehlet H (2002) Pathophysiology and clinical implications of perioperative fluid excess. Br J Anaesth 89:622–632

    Article  PubMed  CAS  Google Scholar 

  68. Jacob M, Bruegger D, Rehm M et al (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586

    Article  PubMed  CAS  Google Scholar 

  69. Jacob M, Bruegger D, Rehm M et al (2006) Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 104:1223–1231

    Article  PubMed  CAS  Google Scholar 

  70. Jacob M, Chappell D, Conzen P et al (2008) Blood volume is normal after pre-operative overnight fasting. Acta Anaesthesiol Scand 52:522–529

    Article  PubMed  CAS  Google Scholar 

  71. Jacob M, Chappell D, Hofmann-Kiefer K et al (2007) Determinants of insensible fluid loss. Perspiration, protein shift and endothelial glycocalyx. Anaesthesist 56:747–758, 760–744

    Article  PubMed  CAS  Google Scholar 

  72. Jacob M, Peter K, Rehm M (2006) In process citation. Anaesthesist 55:369–370

    Article  PubMed  CAS  Google Scholar 

  73. Jacob M, Rehm M, Orth V et al (2003) Exact measurement of the volume effect of 6% hydoxyethyl starch 130/0.4 (Voluven) during acute preoperative normovolemic hemodilution. Anaesthesist 52:896–904

    Article  PubMed  CAS  Google Scholar 

  74. Jansen JR, Wesseling KH, Settels JJ, Schreuder JJ (1990) Continuous cardiac output monitoring by pulse contour during cardiac surgery. Eur Heart J 11 [Suppl I]:26–32

  75. Jonas M, Fennell J, Brudney CS (2008) Haemodynamic optimisation of the surgical patient revisited. Anaesth Int 2:16–21

    Google Scholar 

  76. Jonas MM, Tanser SJ (2002) Lithium dilution measurement of cardiac output and arterial pulse waveform analysis: an indicator dilution calibrated beat-by-beat system for continuous estimation of cardiac output. Curr Opin Crit Care 8:257–261

    Article  PubMed  Google Scholar 

  77. Jules-Elysee KM, Yadeau JT, Urban MK (2008) Pulmonary artery versus central venous catheter monitoring in the outcome of patients undergoing bilateral total knee replacement. HSS J 5:27–30

    Article  PubMed  Google Scholar 

  78. Kallmeyer IJ, Collard CD, Fox JA et al (2001) The safety of intraoperative transesophageal echocardiography: a case series of 7,200 cardiac surgical patients. Anesth Analg 92:1126–1130

    Article  PubMed  CAS  Google Scholar 

  79. Kastrup M, Markewitz A, Spies C et al (2007) Current practice of hemodynamic monitoring and vasopressor and inotropic therapy in post-operative cardiac surgery patients in Germany: results from a postal survey. Acta Anaesthesiol Scand 51:347–358

    Article  PubMed  CAS  Google Scholar 

  80. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  81. Kumar A, Anel R, Bunnell E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    Article  PubMed  Google Scholar 

  82. Kurita T, Morita K, Kato S et al (1997) Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth 79:770–775

    PubMed  CAS  Google Scholar 

  83. Lamke LO, Nilsson G, Reithner L (1980) The influence of elevated body temperature on skin perspiration. Acta Chir Scand 146:81–84

    PubMed  CAS  Google Scholar 

  84. Lamke LO, Nilsson GE, Reithner HL (1977) Insensible perspiration from the skin under standardized environmental conditions. Scand J Clin Lab Invest 37:325–331

    Article  PubMed  CAS  Google Scholar 

  85. Lamke LO, Nilsson GE, Reithner HL (1977) Water loss by evaporation from the abdominal cavity during surgery. Acta Chir Scand 143:279–284

    PubMed  CAS  Google Scholar 

  86. Larsen R (2008) Anästhesie. Urban & Fischer, Elsevier, München

  87. Lee JH, Kim JT, Yoon SZ et al (2007) Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br J Anaesth 99:343–348

    Article  PubMed  Google Scholar 

  88. Lefrant JY, Bruelle P, Aya AG et al (1998) Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med 24:347–352

    Article  PubMed  CAS  Google Scholar 

  89. Lennon MJ, Gibbs NM, Weightman WM et al (2005) Transesophageal echocardiography-related gastrointestinal complications in cardiac surgical patients. J Cardiothorac Vasc Anesth 19:141–145

    Article  PubMed  Google Scholar 

  90. Lichtwarck-Aschoff M, Beale R, Pfeiffer UJ (1996) Central venous pressure, pulmonary artery occlusion pressure, intrathoracic blood volume, and right ventricular end-diastolic volume as indicators of cardiac preload. J Crit Care 11:180–188

    Article  PubMed  CAS  Google Scholar 

  91. Linton RA, Jonas MM, Tibby SM et al (2000) Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med 26:1507–1511

    Article  PubMed  CAS  Google Scholar 

  92. Lobo SM, Salgado PF, Castillo VG et al (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 28:3396–3404

    Article  PubMed  CAS  Google Scholar 

  93. Loick HM, Greim CA, Roewer N, Van Aken H (1999) Richtlinien zur Weiterbildung in der transösophagealen Echokardiographie. Anasthesiol Intensivmed 40:67–71

    Google Scholar 

  94. Maerz L, Kaplan LJ (2008) Abdominal compartment syndrome. Crit Care Med 36:S212–S215

    Article  PubMed  Google Scholar 

  95. Maharaj CH, Kallam SR, Malik A et al (2005) Preoperative intravenous fluid therapy decreases postoperative nausea and pain in high risk patients. Anesth Analg 100:675–682, table of contents

    Article  PubMed  CAS  Google Scholar 

  96. Manecke GR (2005) Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices 2:523–527

    Article  PubMed  Google Scholar 

  97. Manecke GR Jr, Auger WR (2007) Cardiac output determination from the arterial pressure wave: clinical testing of a novel algorithm that does not require calibration. J Cardiothorac Vasc Anesth 21:3–7

    Article  PubMed  Google Scholar 

  98. Marquez J, McCurry K, Severyn DA, Pinsky MR (2008) Ability of pulse power, esophageal Doppler, and arterial pulse pressure to estimate rapid changes in stroke volume in humans. Crit Care Med 36:3001–3007

    Article  PubMed  Google Scholar 

  99. Marx G, Cope T, McCrossan L et al (2004) Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol 21:132–138

    PubMed  CAS  Google Scholar 

  100. Marx G, Reinhart K (2006) Venous oximetry. Curr Opin Crit Care 12:263–268

    Article  PubMed  Google Scholar 

  101. McKendry M, McGloin H, Saberi D et al (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258

    Article  PubMed  Google Scholar 

  102. Meier-Hellmann A, Reinhart K, Bredle DL et al (1997) Epinephrine impairs splanchnic perfusion in septic shock. Crit Care Med 25:399–404

    Article  PubMed  CAS  Google Scholar 

  103. Michard F (2005) Volume management using dynamic parameters: the good, the bad, and the ugly. Chest 128:1902–1903

    Article  PubMed  Google Scholar 

  104. Michard F, Boussat S, Chemla D et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  105. Michard F, Reuter DA (2003) Assessing cardiac preload or fluid responsiveness? It depends on the question we want to answer. Intensive Care Med 29:1396; author reply 1397

    Article  PubMed  Google Scholar 

  106. Michard F, Ruscio L, Teboul JL (2001) Clinical prediction of fluid responsiveness in acute circulatory failure related to sepsis. Intensive Care Med 27:1238

    Article  PubMed  CAS  Google Scholar 

  107. Michard F, Teboul JL (2001) Mechanical ventilation-related variability of stroke volume. Clinical evaluation and therapeutic implications. Rev Mal Respir 18:631–638

    PubMed  CAS  Google Scholar 

  108. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  109. Michard F, Teboul JL (2000) Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 4:282–289

    Article  PubMed  CAS  Google Scholar 

  110. Mielck F, Buhre W, Hanekop G et al (2003) Comparison of continuous cardiac output measurements in patients after cardiac surgery. J Cardiothorac Vasc Anesth 17:211–216

    Article  PubMed  Google Scholar 

  111. Min JK, Spencer KT, Furlong KT et al (2005) Clinical features of complications from transesophageal echocardiography: a single-center case series of 10,000 consecutive examinations. J Am Soc Echocardiogr 18:925–929

    Article  PubMed  Google Scholar 

  112. Monnet X, Anguel N, Osman D et al (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33:448–453

    Article  PubMed  Google Scholar 

  113. Monnet X, Rienzo M, Osman D et al (2005) Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med 31:1195–1201

    Article  PubMed  Google Scholar 

  114. Muir AL, Kirby BJ, King AJ, Miller HC (1970) Mixed venous oxygen saturation in relation to cardiac output in myocardial infarction. Br Med J 4:276–278

    Article  PubMed  CAS  Google Scholar 

  115. Mythen M, Vercueil A (2004) Fluid balance. Vox Sang 87 [Suppl 1]:77–81

  116. Mythen MG, Webb AR (1994) Intra-operative gut mucosal hypoperfusion is associated with increased post-operative complications and cost. Intensive Care Med 20:99–104

    Article  PubMed  CAS  Google Scholar 

  117. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130:423–429

    PubMed  CAS  Google Scholar 

  118. Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of post-operative organ dysfunction. Intensive Care Med 20:203–209

    Article  PubMed  CAS  Google Scholar 

  119. Nelson LD (1997) The new pulmonary artery catheters: continuous venous oximetry, right ventricular ejection fraction, and continuous cardiac output. New Horiz 5:251–258

    PubMed  CAS  Google Scholar 

  120. Nielsen OM, Engell HC (1986) The importance of plasma colloid osmotic pressure for interstitial fluid volume and fluid balance after elective abdominal vascular surgery. Ann Surg 203:25–29

    Article  PubMed  CAS  Google Scholar 

  121. Nisanevich V, Felsenstein I, Almogy G et al (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103:25–32

    Article  PubMed  Google Scholar 

  122. Noblett SE, Snowden CP, Shenton BK et al (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93:1069–1076

    Article  PubMed  CAS  Google Scholar 

  123. Nunez S, Maisel A (1998) Comparison between mixed venous oxygen saturation and thermodilution cardiac output in monitoring patients with severe heart failure treated with milrinone and dobutamine. Am Heart J 135:383–388

    Article  PubMed  CAS  Google Scholar 

  124. Opdam HI, Wan L, Bellomo R (2007) A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med 33:344–349

    Article  PubMed  Google Scholar 

  125. Osthaus WA, Huber D, Beck C et al (2006) Correlation of oxygen delivery with central venous oxygen saturation, mean arterial pressure and heart rate in piglets. Paediatr Anaesth 16:944–947

    Article  PubMed  Google Scholar 

  126. Pearse R, Dawson D, Fawcett J et al (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  Google Scholar 

  127. Pearse RM, Ikram K, Barry J (2004) Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output. Crit Care 8:190–195

    Article  PubMed  Google Scholar 

  128. Piercy M, McNicol L, Dinh DT et al (2009) Major complications related to the use of transesophageal echocardiography in cardiac surgery. J Cardiothorac Vasc Anesth 23:62–65

    Article  PubMed  Google Scholar 

  129. Pittman J, Bar-Yosef S, SumPing J et al (2005) Continuous cardiac output monitoring with pulse contour analysis: a comparison with lithium indicator dilution cardiac output measurement. Crit Care Med 33:2015–2021

    Article  PubMed  Google Scholar 

  130. Poeze M, Greve JW, Ramsay G (2005) Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care 9:R771–R779

    Article  PubMed  Google Scholar 

  131. Polonen P, Ruokonen E, Hippelainen M et al (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    Article  PubMed  CAS  Google Scholar 

  132. Prien T, Backhaus N, Pelster F et al (1990) Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery. J Clin Anesth 2:317–323

    Article  PubMed  CAS  Google Scholar 

  133. Pries AR, Secomb TW, Gaehtgens P (2000) The endothelial surface layer. Pflugers Arch 440:653–666

    Article  PubMed  CAS  Google Scholar 

  134. Puneet, Chauhan V, Singh S et al (2007) Abdominal compartment syndrome – an old syndrome, a new perspective. Trop Gastroenterol 28:156–158

    PubMed  CAS  Google Scholar 

  135. Rauch H, Muller M, Fleischer F et al (2002) Pulse contour analysis versus thermodilution in cardiac surgery patients. Acta Anaesthesiol Scand 46:424–429

    Article  PubMed  CAS  Google Scholar 

  136. Rehm M, Zahler S, Lotsch M et al (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 100:1211–1223

    Article  PubMed  CAS  Google Scholar 

  137. Reinhart K, Kersting T, Fohring U, Schafer M (1986) Can central-venous replace mixed-venous oxygen saturation measurements during anesthesia? Adv Exp Med Biol 200:67–72

    PubMed  CAS  Google Scholar 

  138. Reithner L, Johansson H, Strouth L (1980) Insensible perspiration during anaesthesia and surgery. Acta Anaesthesiol Scand 24:362–366

    Article  PubMed  CAS  Google Scholar 

  139. Reitsma S, Slaaf DW, Vink H et al (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 454:345–359

    Article  PubMed  CAS  Google Scholar 

  140. Renner J, Gruenewald M, Brand P et al (2007) Global end-diastolic volume as a variable of fluid responsiveness during acute changing loading conditions. J Cardiothorac Vasc Anesth 21:650–654

    Article  PubMed  Google Scholar 

  141. Reuter DA, Bayerlein J, Goepfert MS et al (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–480

    PubMed  Google Scholar 

  142. Reuter DA, Goepfert MS, Goresch T et al (2005) Assessing fluid responsiveness during open chest conditions. Br J Anaesth 94:318–323

    Article  PubMed  CAS  Google Scholar 

  143. Reuter DA, Goresch T, Goepfert MS et al (2004) Effects of mid-line thoracotomy on the interaction between mechanical ventilation and cardiac filling during cardiac surgery. Br J Anaesth 92:808–813

    Article  PubMed  CAS  Google Scholar 

  144. Richard C, Thuillez C, Pezzano M et al (1989) Relationship between mixed venous oxygen saturation and cardiac index in patients with chronic congestive heart failure. Chest 95:1289–1294

    Article  PubMed  CAS  Google Scholar 

  145. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  146. Robin E, Costecalde M, Lebuffe G, Vallet B (2006) Clinical relevance of data from the pulmonary artery catheter. Crit Care 10 [Suppl 3]:S3

  147. Roeck M, Jakob SM, Boehlen T et al (2003) Change in stroke volume in response to fluid challenge: assessment using esophageal Doppler. Intensive Care Med 29:1729–1735

    Article  PubMed  Google Scholar 

  148. Rossaint R, Werner C, Zwißler B (2008) Die Anästhesiologie. Springer, Berlin Heidelberg New York Tokio

  149. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83

    Article  PubMed  CAS  Google Scholar 

  150. Sakka SG, Kozieras J, Thuemer O, van Hout N (2007) Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth 99:337–342

    Article  PubMed  CAS  Google Scholar 

  151. Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25:843–846

    Article  PubMed  CAS  Google Scholar 

  152. Sakka SG, Ruhl CC, Pfeiffer UJ et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  CAS  Google Scholar 

  153. Sander M, Spies CD, Berger K et al (2007) Prediction of volume response under open-chest conditions during coronary artery bypass surgery. Crit Care 11:R121

    Article  PubMed  Google Scholar 

  154. Sander M, Spies CD, Foer A, von Heymann C (2008) Cardiac output measurement by arterial waveform analysis in cardiac surgery – A comparison of measurements derived from waveforms of the radial artery versus the ascending aorta. J Int Med Res 36:414–419

    PubMed  CAS  Google Scholar 

  155. Sander M, Spies CD, Foer A et al (2007) Agreement of central venous saturation and mixed venous saturation in cardiac surgery patients. Intensive Care Med 33:1719–1725

    Article  PubMed  Google Scholar 

  156. Sander M, Spies CD, Grubitzsch H et al (2006) Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements. Crit Care 10:R164

    Article  PubMed  Google Scholar 

  157. Sander M, von Heymann C, Foer A et al (2005) Pulse contour analysis after normothermic cardiopulmonary bypass in cardiac surgery patients. Crit Care 9:R729–R734

    Article  PubMed  Google Scholar 

  158. Sandham JD, Hull RD, Brant RF et al (2003) A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 348:5–14

    Article  PubMed  Google Scholar 

  159. Savage RM, Lytle BW, Aronson S et al (1997) Intraoperative echocardiography is indicated in high-risk coronary artery bypass grafting. Ann Thorac Surg 64:368–373; discussion 373–364

    Article  PubMed  CAS  Google Scholar 

  160. Schiffmann H, Erdlenbruch B, Singer D et al (2002) Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 16:592–597

    Article  PubMed  Google Scholar 

  161. Schmidlin D, Schuepbach R, Bernard E et al (2001) Indications and impact of postoperative transesophageal echocardiography in cardiac surgical patients. Crit Care Med 29:2143–2148

    Article  PubMed  CAS  Google Scholar 

  162. Schulmeyer MC, Santelices E, Vega R, Schmied S (2006) Impact of intraoperative transesophageal echocardiography during noncardiac surgery. J Cardiothorac Vasc Anesth 20:768–771

    Article  PubMed  Google Scholar 

  163. Shanewise JS, Cheung AT, Aronson S et al (1999) ASE/SCA guidelines for performing a comprehensive intraoperative multiplane transesophageal echocardiography examination: recommendations of the American Society of Echocardiography Council for Intraoperative Echocardiography and the Society of Cardiovascular Anesthesiologists Task Force for Certification in Perioperative Transesophageal Echocardiography. J Am Soc Echocardiogr 12:884–900

    Article  PubMed  CAS  Google Scholar 

  164. Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  165. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315:909–912

    PubMed  CAS  Google Scholar 

  166. Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: beat-by-beat cardiac output monitoring. Int Anesthesiol Clin 31:99–125

    Article  PubMed  CAS  Google Scholar 

  167. Singer M, Allen MJ, Webb AR, Bennett ED (1991) Effects of alterations in left ventricular filling, contractility, and systemic vascular resistance on the ascending aortic blood velocity waveform of normal subjects. Crit Care Med 19:1138–1145

    PubMed  CAS  Google Scholar 

  168. Singer M, Bennett ED (1991) Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med 19:1132–1137

    Article  PubMed  CAS  Google Scholar 

  169. Singer M, Clarke J, Bennett ED (1989) Continuous hemodynamic monitoring by esophageal Doppler. Crit Care Med 17:447–452

    Article  PubMed  CAS  Google Scholar 

  170. Siniscalchi A, Pavesi M, Piraccini E et al (2005) Right ventricular end-diastolic volume index as a predictor of preload status in patients with low right ventricular ejection fraction during orthotopic liver transplantation. Transplant Proc 37:2541–2543

    Article  PubMed  CAS  Google Scholar 

  171. Skarvan K, Lambert A, Filipovic M, Seeberger M (2001) Reference values for left ventricular function in subjects under general anaesthesia and controlled ventilation assessed by two-dimensional transoesophageal echocardiography. Eur J Anaesthesiol 18:713–722

    PubMed  CAS  Google Scholar 

  172. Spies CD, Breuer JP, Gust R et al (2003) Preoperative fasting. An update. Anaesthesist 52:1039–1045

    Article  PubMed  CAS  Google Scholar 

  173. Stephan F, Flahault A, Dieudonne N et al (2001) Clinical evaluation of circulating blood volume in critically ill patients – contribution of a clinical scoring system. Br J Anaesth 86:754–762

    Article  PubMed  CAS  Google Scholar 

  174. Szakmany T, Toth I, Kovacs Z et al (2005) Effects of volumetric vs. pressure-guided fluid therapy on postoperative inflammatory response: a prospective, randomized clinical trial. Intensive Care Med 31:656–663

    Article  PubMed  Google Scholar 

  175. Tibby SM, Murdoch IA (2002) Measurement of cardiac output and tissue perfusion. Curr Opin Pediatr 14:303–309

    Article  PubMed  Google Scholar 

  176. Toubekis E, Feldheiser A, Erb J et al (2007) Monitoring of perioperative fluid management in children. Anasthesiol Intensivmed Notfallmed Schmerzther 42:644–654

    Article  PubMed  Google Scholar 

  177. Tuman KJ, McCarthy RJ, Spiess BD et al (1989) Effect of pulmonary artery catheterization on outcome in patients undergoing coronary artery surgery. Anesthesiology 70:199–206

    PubMed  CAS  Google Scholar 

  178. Vallee F, Fourcade O, De Soyres O et al (2005) Stroke output variations calculated by esophageal Doppler is a reliable predictor of fluid response. Intensive Care Med 31:1388–1393

    Article  PubMed  Google Scholar 

  179. Venn R, Steele A, Richardson P et al (2002) Randomized controlled trial to investigate influence of the fluid challenge on duration of hospital stay and perioperative morbidity in patients with hip fractures. Br J Anaesth 88:65–71

    Article  PubMed  CAS  Google Scholar 

  180. Vincent JL, Pinsky MR, Sprung CL et al (2008) The pulmonary artery catheter: in medio virtus. Crit Care Med 36:3093–3096

    Article  PubMed  Google Scholar 

  181. von Heymann C, Grebe D, Schwenk W et al (2006) The influence of intraoperative fluid therapy on the postoperative outcome in „fast track“ colon surgery. Anasthesiol Intensivmed Notfallmed Schmerzther 41:E1–E7

    Article  Google Scholar 

  182. von Spiegel T, Wietasch G, Bursch J, Hoeft A (1996) Cardiac output determination with transpulmonary thermodilution. An alternative to pulmonary catheterization? Anaesthesist 45:1045–1050

    Article  Google Scholar 

  183. Wakeling HG, McFall MR, Jenkins CS et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95:634–642

    Article  PubMed  CAS  Google Scholar 

  184. Walsh SR, Tang T, Bass S, Gaunt ME (2008) Doppler-guided intra-operative fluid management during major abdominal surgery: systematic review and meta-analysis. Int J Clin Pract 62:466–470

    Article  PubMed  CAS  Google Scholar 

  185. Webb AR (2001) Recognizing hypovolaemia. Minerva Anestesiol 67:185–189

    PubMed  CAS  Google Scholar 

  186. Weinbroum AA, Biderman P, Soffer D et al (2008) Reliability of cardiac output calculation by the fick principle and central venous oxygen saturation in emergency conditions. J Clin Monit Comput 22:361–366

    Article  PubMed  Google Scholar 

  187. Wiener RS, Welch HG (2007) Trends in the use of the pulmonary artery catheter in the United States, 1993-2004. JAMA 298:423–429

    Article  PubMed  CAS  Google Scholar 

  188. Wilson J, Woods I, Fawcett J et al (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318:1099–1103

    PubMed  CAS  Google Scholar 

  189. Yazigi A, El Khoury C, Jebara S et al (2008) Comparison of central venous to mixed venous oxygen saturation in patients with low cardiac index and filling pressures after coronary artery surgery. J Cardiothorac Vasc Anesth 22:77–83

    Article  PubMed  Google Scholar 

  190. Zausig YA, Weigand MA, Graf BM (2006) Perioperative fluid management: an analysis of the present situation. Anaesthesist 55:371–390

    Article  PubMed  CAS  Google Scholar 

  191. Zollner C, Haller M, Weis M et al (2000) Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14:125–129

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Im Rahmen von wissenschaftlichen Untersuchungen haben Prof. Dr. C. Spies von der Firma Edwards Lifesciences und Dr. M. Sander von der Firma Pulsion Medical Systems finanzielle Unterstützung bekommen. Dr. U. Wittkowski, Dr. J. Erb, Dr. A. Feldheiser und Prof. Dr. C. von Heymann erklären keinen Interessenkonflikt zu haben.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. von Heymann DEAA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wittkowski, U., Spies, C., Sander, M. et al. Hämodynamisches Monitoring in der perioperativen Phase. Anaesthesist 58, 764–786 (2009). https://doi.org/10.1007/s00101-009-1590-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-009-1590-4

Schlüsselwörter

Keywords

Navigation