Skip to main content
Log in

Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We are concerned with the Keller–Segel–Navier–Stokes system

$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} \rho _t+u\cdot \nabla \rho =\Delta \rho -\nabla \cdot (\rho \mathcal {S}(x,\rho ,c)\nabla c)-\rho m, &{}\quad (x,t)\in \varOmega \times (0,T),\\ m_t+u\cdot \nabla m=\Delta m-\rho m, &{}\quad (x,t)\in \varOmega \times (0,T),\\ c_t+u\cdot \nabla c=\Delta c-c+m, &{}\quad (x,t)\in \varOmega \times (0,T),\\ u_t+ (u\cdot \nabla ) u=\Delta u-\nabla P+(\rho +m)\nabla \phi ,\quad \nabla \cdot u=0, &{}\quad (x,t)\in \varOmega \times (0,T) \end{array}\right. \end{aligned}$$

subject to the boundary condition \((\nabla \rho -\rho \mathcal {S}(x,\rho ,c)\nabla c)\cdot \nu =\nabla m\cdot \nu =\nabla c\cdot \nu =0, u=0\) in a bounded smooth domain \(\varOmega \subset \mathbb {R}^3\). It is shown that this problem admits a global classical solution with exponential decay properties when \(\mathcal {S}\in C^2(\overline{\varOmega }\times [0,\infty )^2)^{3\times 3}\) satisfies \(|\mathcal {S}(x,\rho ,c)|\le C_S \) for some \(C_S>0\), and the initial data satisfy certain smallness conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Kang, K., Kim, J., Lee, J.: Lower bound of mass in a chemotactic model with advection and absorbing reaction. SIAM J. Math. Anal. 49(2), 723–755 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bellomo, N., Belloquid, A., Tao, Y., Winkler, M.: Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math. Mod. Meth. Appl. Sci. 25(9), 1663–1763 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cao, X., Lankeit, J.: Global classical small-data solutions for a 3D chemotaxis Navier–Stokes system involving matrix-valued sensitivities. Calc. Var. PDE 55(4), 55–107 (2016)

    Article  Google Scholar 

  4. Cao, X., Winkler, M.: Sharp decay estimates in a bioconvection model with quadratic degradation in bounded domains. Proc. R. Soc. Edinb. Sect. A 148(5), 939–955 (2018)

    Article  MathSciNet  Google Scholar 

  5. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. I. Sperm-atractant molecules in the eggs of the scleractinian coral Montipora digitata. Mar. Biol. 118, 177–182 (1994)

    Article  Google Scholar 

  6. Coll, J.C., et al.: Chemical aspects of mass spawning in corals. II. (-)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar. Biol. 123, 137–143 (1995)

    Article  Google Scholar 

  7. Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R.E., Kessler, J.O.: Selfconcentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93, 098103-1-4 (2004)

    Article  Google Scholar 

  8. Espejo, E., Suzuki, T.: Reaction terms avoiding aggregation in slow fluids. Nonlinear Anal. Real World Appl. 21, 110–126 (2015)

    Article  MathSciNet  Google Scholar 

  9. Espejo, E., Suzuki, T.: Reaction enhancement by chemotaxis. Nonlinear Anal. Real World Appl. 35, 102–131 (2017)

    Article  MathSciNet  Google Scholar 

  10. Espejo, E., Winkler, M.: Global classical solvability and stabilization in a two-dimensional chemotaxis-Navier-Stokes system modeling coral fertilization. Nonlinearity 31, 1227–1259 (2018)

    Article  MathSciNet  Google Scholar 

  11. Fujiwara, D., Morimoto, H.: An \(L^r\)-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(3), 685–700 (1977)

    MathSciNet  MATH  Google Scholar 

  12. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  13. Htwe, M.W., Wang, Y.: Decay profile for the chemotactic model with advection and quadratic degradation in bounded domains. Appl. Math. Letter 98, 36–40 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and efficiency of biological reactions: the critical reaction case. J. Math. Phys. 53, 115609, 9pp (2012)

    MathSciNet  MATH  Google Scholar 

  15. Kiselev, A., Ryzhik, L.: Biomixing by chemotaxis and enhancement of biological reactions. Commun. PDE 37, 298–318 (2012)

    Article  MathSciNet  Google Scholar 

  16. Kiselev, A., Xu, X.: Suppression of chemotactic explosion by mixing. Arch. Ration. Mech. Anal. 222, 1077–1112 (2016)

    Article  MathSciNet  Google Scholar 

  17. Li, X.: Global classical solutions in a Keller–Segal(–Navier)–Stokes system modeling coral fertilization. J. Differ. Equ. 11, 6290–6315 (2019)

    Article  Google Scholar 

  18. Li, D., Mu, C., Zheng, P., Ke, K.: Boundedness in a three-dimensional Keller–Segel–Stokes system involving tensor-valued sensitivity with saturation. Discrete Contin. Dyn. Syst. Ser. B 24, 831–849 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Li, J., Pang, P.Y.H., Wang, Y.: Global boundedness and decay property of a three-dimensional Keller–Segel–Stokes system modeling coral fertilization. Nonlinearity 32, 2815–2847 (2019)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Wang, Y.: Global weak solutions in a three-dimensional Keller–Segel–Navier–Stokes system involving a tensor-valued sensitivity with saturation. J. Differ. Equ. 262(10), 5271–5305 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lorz, A.: Coupled Keller–Segel–Stokes model: global existence for small initial data and blow-up delay. Commun. Math. Sci. 10, 555–574 (2012)

    Article  MathSciNet  Google Scholar 

  22. Miller, R.L.: Demonstration of sperm chemotaxis in Echinodermata: Asteroidea, holothuroidea, ophiuroidea. J. Exp. Zool. 234, 383–414 (1985)

    Article  Google Scholar 

  23. Othmer, H.G., Hillen, T.: The diffusion limit of transport equations II: chemotaxis equations. SIAM J. Appl. Math. 62, 1222–1250 (2002)

    Article  MathSciNet  Google Scholar 

  24. Painter, K.J., Maini, P.K., Othmer, H.G.: Development and applications of a model for cellular response to multiple chemotactic cues. J. Math. Biol. 41, 285–314 (2000)

    Article  MathSciNet  Google Scholar 

  25. Riffell, J.A., Krug, P.J., Zimmere, R.K.: The ecological and evolutionary consequences of sperm chemoattraction. Proc. Natl. Acad. Sci. USA 101(13), 4501–4506 (2004)

    Article  Google Scholar 

  26. Spehr, M., et al.: Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 301, 2054–2058 (2003)

    Article  Google Scholar 

  27. Tao, Y., Winkler, M.: Boundedness and decay enforced by quadratic degradation in a 3D chemotaxis-fluid system. Z. Angew. Math. Phys. 66, 2555–2573 (2015)

    Article  MathSciNet  Google Scholar 

  28. Tao, Y., Winkler, M.: Blow-up prevention by quadratic degradation in a two-dimensional Keller–Segel–Navier–Stokes system. Z. Angew. Math. Phys. 67, 138 (2016)

    Article  MathSciNet  Google Scholar 

  29. Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C.W., Kessler, J.O., Goldstein, R.E.: Bacterial swimming and oxygen transport near contact lines. Proc. Natl. Acad. Sci. USA 102, 2277–2282 (2005)

    Article  Google Scholar 

  30. Wang, Y., Xiang, Z.: Global existence and boundedness in a Keller–Segel–Stokes system involving a tensor-valued sensitivity with saturation: the 3D case. J. Differ. Equ. 261, 4944–4973 (2016)

    Article  MathSciNet  Google Scholar 

  31. Wiegner, M.: The Navier–Stokes equations—a neverending challenge? Jahresber. Dtsch. Math. Ver. 101, 1–25 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248(12), 2889–2905 (2010)

    Article  MathSciNet  Google Scholar 

  33. Winkler, M.: Global large-data solutions in a chemotaxis-(Navier–)Stokes system modeling cellular swimming in fluid drops. Commun. Partial Differ. Equ. 37, 319–351 (2012)

    Article  MathSciNet  Google Scholar 

  34. Winkler, M.: Global weak solutions in a three-dimensional chemotaxis-Navier–Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire 33, 1329–1352 (2016)

    Article  MathSciNet  Google Scholar 

  35. Winkler, M.: How far do oxytaxis-driven forces influence regularity in the Navier–Stokes system? Trans. Am. Math. Soc. 369, 3067–3125 (2017)

    Article  Google Scholar 

  36. Winkler, M.: Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components. J. Evol. Equ. 18, 1267–1289 (2018)

    Article  MathSciNet  Google Scholar 

  37. Winkler, M.: A three-dimensional Keller–Segel–Navier–Stokes system with logistic source: global weak solutions and asymptotic stabilization. J. Funct. Anal. 276, 1339–1401 (2019)

    Article  MathSciNet  Google Scholar 

  38. Winkler, M.: Can Rotational fluxes impede the tendency toward spatial homogeneity in nutrient taxis(-Stokes) systems? Int. Math. Res. Notices (2019). https://doi.org/10.1093/imrn/rnz056

    Article  Google Scholar 

  39. Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations. SIAM J. Appl. Math. 70, 133–167 (2009)

    Article  MathSciNet  Google Scholar 

  40. Yu, H., Wang, W., Zheng, S.: Global classical solutions to the Keller–Segel–(Navier–)Stokes system with matrix valueed sensitivity. J. Math. Anal. Appl. 461(2), 1748–1770 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National University of Singapore Academic Research Fund (R-146-000-249-114) and by the National Natural Science Foundation of China (No. 11571363). The authors also gratefully acknowledge useful suggestions and comments generously provided by the referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Htwe, M., Pang, P.Y.H. & Wang, Y. Asymptotic behavior of classical solutions of a three-dimensional Keller–Segel–Navier–Stokes system modeling coral fertilization. Z. Angew. Math. Phys. 71, 90 (2020). https://doi.org/10.1007/s00033-020-01310-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01310-y

Mathematics Subject Classification

Keywords

Navigation