Skip to main content
Log in

Material characterization and computations of a polymeric metamaterial with a pantographic substructure

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The development of additive manufacturing methods, such as 3D printing, allows the design of more complex architectured materials. Indeed, the main structure can be obtained by means of periodically (or quasi-periodically) arranged substructures which are properly conceived to provide unconventional deformation patterns. These kinds of materials which are ‘substructure depending’ are called metamaterials. Detailed simulations of a metamaterial is challenging but accurately possible by means of the elasticity theory. In this study, we present the steps taken for analyzing and simulating a particular type of metamaterial composed of a pantographic substructure which is periodic in space—it is simply a grid. Nevertheless, it shows an unexpected type of deformation under a uniaxial shear test. This particular behavior is investigated in this work with the aid of direct numerical simulations by using the finite element method. In other words, a detailed mesh is generated to properly describe the substructure. The metamaterial is additively manufactured using a common polymer showing nonlinear elastic deformation. Experiments are undertaken, and several hyperelastic material models are examined by using an inverse analysis. Moreover, a direct numerical simulation is repeated for all studied material models. We show that a good agreement between numerical simulations and experimental data can be attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abali, B.E.: Thermodynamically Compatible Modeling, Determination of Material Parameters, and Numerical Analysis of Nonlinear Rheological Materials. PhD thesis, Technische Universität Berlin, Institute of Mechanics (2014)

  2. Abali, B.E.: Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials. Springer, Berlin (2017)

    MATH  Google Scholar 

  3. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Article  Google Scholar 

  4. Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28(5), 1221–1246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Altenbach, H., Eremeyev, V.A.: Analysis of the viscoelastic behavior of plates made of functionally graded materials. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 88(5), 332–341 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Altenbach, H., Eremeyev, V.A. (eds.): Generalized Continua—from the Theory to Engineering Applications, Volume 541 of CISM International Centre for Mechanical Sciences. Springer, Wien (2013)

  8. Altenbach, H., Eremeyev, V.A.: Surface viscoelasticity and effective properties of materials and structures. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modelling for Structures, pp. 9–16. Springer, Berlin (2013)

  9. Andreaus, U., Spagnuolo, M., Lekszycki, T., Eugster, S.R.: A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler–Bernoulli beams. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0665-3

  10. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41(2), 389–412 (1993)

    Article  MATH  Google Scholar 

  11. Attard, M.M., Hunt, G.W.: Hyperelastic constitutive modeling under finite strain. Int. J. Solids Struct. 41(18–19), 5327–5350 (2004)

    Article  MATH  Google Scholar 

  12. Barchiesi, E., Ganzosch, G., Liebold, C., Placidi, L., Grygoruk, R., Müller, W.H.: Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0626-x

  13. Barchiesi, E., Spagnuolo, M., Placidi, L.: Mechanical metamaterials: a state of the art. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517735695

  14. Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanosci. Technol. Int. J. 6(2), 161–178 (2015)

    Google Scholar 

  15. Battista, A., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts in natural vibrations in pantographic metamaterials under biaxial tests. Technische Mechanik 37(1), 1–17 (2017)

    Google Scholar 

  16. Biderman, V.L.: Calculation of rubber parts. Rascheti na prochnost, Moscow (1958)

    Google Scholar 

  17. Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuomo, M.: Forms of the dissipation function for a class of viscoplastic models. Math. Mech. Complex Syst. 5(3), 217–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Coexistence of ordered and disordered phases in Potts models in the continuum. J. Stat. Phys. 134(2), 243–306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  21. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of gabrio piola. Math. Mech. Solids 20, 887–928 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math. Mech. Solids 22(4), 852–872 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 1–23 (2016)

    Google Scholar 

  24. dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. dell’Isola, F., Seppecher, P., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0689-8

  26. dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  27. Diyaroglu, C., Oterkus, E., Oterkus, S., Madenci, E.: Peridynamics for bending of beams and plates with transverse shear deformation. Int. J. Solids Struct. 69, 152–168 (2015)

    Article  Google Scholar 

  28. Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3(1), 43–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Eringen, A.C.: Theory of Micropolar Elasticity. Technical report, DTIC Document (1967)

  31. Eugster, S.R., Hesch, C., Betsch, P., Glocker, C.: Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. Int. J. Numer. Methods Eng. 97(2), 111–129 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Flory, P.J., Rehner Jr., J.: Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity. J. Chem. Phys. 11(11), 512–520 (1943)

    Article  Google Scholar 

  33. Ganzosch, G., dell’Isola, F., Turco, E., Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)

    Article  Google Scholar 

  34. Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Giorgio, I., Rizzi, N.L., Turco, E.: Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc. R. Soc. A 473(2207), 1–21 (2017)

    Article  MathSciNet  Google Scholar 

  36. Harrison, P., Clifford, M.J., Long, A.C., Rudd, C.D.: A constituent-based predictive approach to modelling the rheology of viscous textile composites. Compos. A Appl. Sci. Manuf. 35(7–8), 915–931 (2004)

    Article  Google Scholar 

  37. Hoffman, J., Jansson, J., Johnson, C., Knepley, M., Kirby, R.C., Logg, A., Scott, L.R., Wells, G.N.: Fenics (2005). http://www.fenicsproject.org/

  38. Holzapfel, A.G.: Nonlinear Solid Mechanics II. Wiley, New York (2000)

    MATH  Google Scholar 

  39. Isihara, A., Hashitsume, N., Tatibana, M.: Statistical theory of rubber-like elasticity. IV (two-dimensional stretching). J. Chem. Phys. 19(12), 1508–1512 (1951)

    Article  MathSciNet  Google Scholar 

  40. Itskov, M., Aksel, N.: A class of orthotropic and transversely isotropic hyperelastic constitutive models based on a polyconvex strain energy function. Int. J. Solids Struct. 41(14), 3833–3848 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. James, A.G., Green, A., Simpson, G.M.: Strain energy functions of rubber. I. Characterization of gum vulcanizates. J. Appl. Polym. Sci. 19(7), 2033–2058 (1975)

    Article  Google Scholar 

  42. Julio García Ruíz, M., Yarime Suárez González, L.: Comparison of hyperelastic material models in the analysis of fabrics. Int. J. Cloth. Sci. Technol. 18(5), 314–325 (2006)

    Article  Google Scholar 

  43. Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33–52 (2018)

    Article  MathSciNet  Google Scholar 

  44. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  MATH  Google Scholar 

  45. Logg, A., Mardal, K.A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method, the FEniCS Book, Volume 84 of Lecture Notes in Computational Science and Engineering. Springer, Berlin (2011)

  46. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79(5), 835–858 (2006)

    Article  Google Scholar 

  47. Martins, P., Natal Jorge, R.M., Ferreira, A.J.M.: A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues. Strain 42(3), 135–147 (2006)

    Article  Google Scholar 

  48. Milton, G.W., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Mindlin, R.D., Eshel, N.N.: On first strain–gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  MATH  Google Scholar 

  50. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  51. Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., dell’Isola, F.: Pantographic metamaterials show atypical Poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)

    Article  Google Scholar 

  52. Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  53. Misra, A., Poorsolhjouy, P.: Granular micromechanics based micromorphic model predicts frequency band gaps. Contin. Mech. Thermodyn. 28(1–2), 215–234 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  MATH  Google Scholar 

  55. Nadler, B., Papadopoulos, P., Steigmann, D.J.: Multiscale constitutive modeling and numerical simulation of fabric material. Int. J. Solids Struct. 43(2), 206–221 (2006)

    Article  MATH  Google Scholar 

  56. Niiranen, J., Balobanov, V., Kiendl, J., Hosseini, S.B.: Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro-and nano-beam models. Math. Mech. Solids (2017). https://doi.org/10.1177/1081286517739669

  57. Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  58. Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte Mathematik und Physik 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A 474(2210), 1–19 (2018)

    Article  MathSciNet  Google Scholar 

  60. Placidi, L., Barchiesi, E., Battista, A.: An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: dell’Isola, F., Sofonea, M., Steigmann, D. (eds.) Mathematical Modelling in Solid Mechanics, pp. 193–210. Springer, Berlin(2017)

  61. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Placidi, L., Barchiesi, E., Turco, E., Rizzi, N.L.: A review on 2D models for the description of pantographic fabrics. Zeitschrift für angewandte Mathematik und Physik 67(5), 121 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  63. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Zeitschrift für angewandte Mathematik und Physik 69(3), 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  64. Rivlin, R.S.: Large elastic deformations of isotropic materials iv. further developments of the general theory. Philos. Trans. R. Soc. Lond. A 241(835), 379–397 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  65. Rosakis, P.: Ellipticity and deformations with discontinuous gradients in finite elastostatics. Arch. Ration. Mech. Anal. 109(1), 1–37 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  66. Shirani, M., Luo, C., Steigmann, D.J.: Cosserat elasticity of lattice shells with kinematically independent flexure and twist. Contin. Mech. Thermodyn. (2018). https://doi.org/10.1007/s00161-018-0679-x

  67. Soe, S.P., Martindale, N., Constantinou, C., Robinson, M.: Mechanical characterisation of Duraform\(^{\textregistered }\) Flex for FEA hyperelastic material modelling. Polym. Test. 34, 103–112 (2014)

    Article  Google Scholar 

  68. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)

    Article  Google Scholar 

  69. Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta. Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  70. Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)

    Article  Google Scholar 

  71. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  72. Treloar, L.R.G.: The elasticity of a network of long-chain molecules—II. Trans. Faraday Soc. 39, 241–246 (1943)

    Article  Google Scholar 

  73. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4), 85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  74. Turco, E., dell’Isola, F., Rizzi, N.L., Grygoruk, R., Müller, W.H., Liebold, C.: Fiber rupture in sheared planar pantographic sheets: numerical and experimental evidence. Mech. Res. Commun. 76, 86–90 (2016)

    Article  Google Scholar 

  75. Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 171153 (2017)

    Article  Google Scholar 

  76. Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic–viscoplastic solids. Comput. Methods Appl. Mech. Eng. 79(2), 173–202 (1990)

    Article  MATH  Google Scholar 

  77. Yeoh, O.H.: Some forms of the strain energy function for rubber. Rubber Chem. Technol. 66(5), 754–771 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

IG is supported by a grant from the Government of the Russian Federation (No. 14.Y26.31.0031). We thank Prof. Wolfgang H. Müller for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Giorgio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Ganzosch, G., Giorgio, I. et al. Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69, 105 (2018). https://doi.org/10.1007/s00033-018-1000-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-1000-3

Keywords

Mathematics Subject Classification

Navigation