Skip to main content
Log in

Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In order to design the microstructure of metamaterials showing high toughness in extension (property to be shared with muscles), it has been recently proposed (Dell’Isola et al. in Z Angew Math Phys 66(6):3473–3498, 2015) to consider pantographic structures. It is possible to model such structures at a suitably small length scale (resolving in detail the interconnecting pivots/cylinders) using a standard Cauchy first gradient theory. However, the computational costs for such modelling choice are not allowing for the study of more complex mechanical systems including for instance many pantographic substructures. The microscopic model considered here is a quadratic isotropic Saint-Venant first gradient continuum including geometric nonlinearities and characterized by two Lamé parameters. The introduced macroscopic two-dimensional model for pantographic sheets is characterized by a deformation energy quadratic both in the first and second gradient of placement. However, as underlined in Dell’Isola et al. (Proc R Soc Lond A 472(2185):20150790, 2016), it is needed that the second gradient stiffness depends on the first gradient of placement if large deformations and large displacements configurations must be described. The numerical identification procedure presented in this paper consists in fitting the macro-constitutive parameters using several numerical simulations performed with the micro-model. The parameters obtained by the best fit identification in few deformation problems fit very well also in many others, showing that the reduced proposed model is suitable to get an effective model at relevantly lower computational effort. The presented numerical evidences suggest that a rigorous mathematical homogenization result most likely holds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alibert J.-J., Della Corte A.: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alibert J.-J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Altenbach H., Eremeyev V.A.: On the linear theory of micropolar plates. ZAMM-Z. Angew. Math. Mech. 89(4), 242–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aminpour, H., Rizzi, N.: On the modelling of carbon nano tubes as generalized continua. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, vol. 42, pp. 15–35. Springer, Switzerland (2016)

  5. AminPour H., Rizzi N.: A one-dimensional continuum with microstructure for single-wall carbon nanotubes bifurcation analysis. Math. Mech. Solids 21(2), 168–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aminpour, H., Rizzi, N., Salerno, G.: A one-dimensional beam model for single-wall carbon nano tube column buckling. In: Civil-comp Proceedings (2014)

  7. Andreaus U., Baragatti P., Placidi L.: Experimental and numerical investigations of the responses of a cantilever beam possibly contacting a deformable and dissipative obstacle under harmonic excitation. Int. J. Non-Linear Mech. 80, 96–106 (2016)

    Article  Google Scholar 

  8. Andreaus U., Baragatti P., Placidi L.: Soft-impact dynamics of deformable bodies. Contin. Mech. Thermodyn. 25(3), 375–398 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caggegi C., Pensée V., Fagone M., Cuomo M., Chevalier L.: Experimental global analysis of the efficiency of carbon fiber anchors applied over CFRP strengthened bricks. Constr. Build. Mater. 53, 203–212 (2014)

    Article  Google Scholar 

  10. Carassale L., Piccardo G.: Non-linear discrete models for the stochastic analysis of cables in turbulent wind. Int. J. Non-Linear Mech. 45(3), 219–231 (2010)

    Article  Google Scholar 

  11. Carcaterra A., Akay A., Bernardini C.: Trapping of vibration energy into a set of resonators: theory and application to aerospace structures. Mech. Syst. Signal Process. 26, 1–14 (2012)

    Article  Google Scholar 

  12. Carcaterra A., D’Ambrogio W.: An iterative rational fraction polynomial technique for modal identification. Meccanica 30(1), 63–75 (1995)

    Article  MATH  Google Scholar 

  13. Carcaterra A., Dell’Isola F., Esposito R., Pulvirenti M.: Macroscopic description of microscopically strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients metamaterials. Arch. Ration. Mech. Anal. 218, 1239–1262 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carcaterra A., Roveri N.: Tire grip identification based on strain information: theory and simulations. Mech. Syst. Signal Process. 41(1), 564–580 (2013)

    Article  Google Scholar 

  15. Cazzani A., Garusi E., Tralli A., Atluri S.N.: A four-node hybrid assumed-strain finite element for laminated composite plates. CMC: Comput. Mater. Contin. 2(1), 23–38 (2005)

    MATH  Google Scholar 

  16. Cazzani A., Lovadina C.: On some mixed finite element methods for plane membrane problems. Comput. Mech. 20(6), 560–572 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech. Solids (2014). doi:10.1177/1081286514531265

  18. Cazzani A., Malagù M., Turco E., Stochino F.: Constitutive models for strongly curved beams in the frame of isogeometric analysis. Math. Mech. Solids 21(2), 182–209 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cazzani, A., Stochino, F., Turco, E.: An analytical assessment of finite element and isogeometric analyses of the whole spectrum of Timoshenko beams. ZAMM-Z. Angew. Math. Mech. (2016). doi:10.1002/zamm.201500280

  20. Challamel N., Lerbet J., Wang C.M., Zhang Z.: Analytical length scale calibration of nonlocal continuum from a microstructured buckling model. ZAMM-Z. Angew. Math. Mech. 94(5), 402–413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Challamel N., Zhang Z., Wang C.M.: Nonlocal equivalent continua for buckling and vibration analyses of microstructured beams. J. Nanomech. Micromech. 5, A4014004 (2014)

    Article  Google Scholar 

  22. Cuomo, M., Dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias-test for fabrics with two families of inextensible fibres. ZAMP-Z. Angew. Math. Phys. (2016). doi:10.1007/s00033-016-0653-z

  23. D’Agostino M.V., Giorgio I., Greco L., Madeo A., Boisse P.: Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015)

    Article  Google Scholar 

  24. D’Annibale F., Luongo A.: A damage constitutive model for sliding friction coupled to wear. Contin. Mech. Thermodyn. 25(2–4), 503–522 (2013)

    Article  MATH  Google Scholar 

  25. D’Annibale F., Rosi G., Luongo A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. D’Annibale F., Rosi G., Luongo A.: On the failure of the ‘similar piezoelectric control’ in preventing loss of stability by nonconservative positional forces. Z. Angew. Math. Phys. 66(4), 1949–1968 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Del Vescovo D., Fregolent A.: Theoretical and experimental dynamic analysis aimed at the improvement of an acoustic method for fresco detachment diagnosis. Mech. Syst. Signal Process. 23(7), 2312–2319 (2009)

    Article  Google Scholar 

  28. Del Vescovo D., Giorgio I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

    Article  MathSciNet  Google Scholar 

  29. Della Corte A., Battista A., Dell’Isola F.: Referential description of the evolution of a 2D swarm of robots interacting with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80, 209–220 (2016)

    Article  Google Scholar 

  30. Dell’Isola F., Andreaus U., Placidi L.: At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dell’Isola, F., D’Agostino, M.V., Madeo, A., Boisse, P., Steigmann, D.J.: Minimization of shear energy in two dimensional continua with two orthogonal families of inextensible fibers: the case of standard bias extension test. J. Elast., 122(2), 131–155 (2016)

  32. Dell’Isola F., Della Corte A., Greco L., Luongo A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)

    Article  Google Scholar 

  33. Dell’Isola F., Giorgio I., Pawlikowski M., Rizzi N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. Lond. A 472(2185), 20150790 (2016)

    Article  Google Scholar 

  34. Dell’Isola F., Lekszycki T., Pawlikowski M., Grygoruk R., Greco L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66(6), 3473–3498 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Dell’Isola F., Madeo A., Seppecher P.: Cauchy tetrahedron argument applied to higher contact interactions. Arch. Ration. Mech. Anal. 219(3), 1305–1341 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Dell’Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S.: The complete works of Gabrio Piola: volume I—commented english translation. Adv. Struct. Mater. (2014). doi:10.1007/978-3-319-00263-7

  37. Dell’Isola F., Seppecher P., Della Corte A.: The postulations á la D’Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. Lond. A 471(2183), 20150415 (2015)

    Article  MathSciNet  Google Scholar 

  38. Dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Z. Angew. Math. Phys. 63(6), 1119–1141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Dell’Isola F., Steigmann D.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 118(1), 113–125 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Dell’Isola F., Steigmann D., Della Corte A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015)

    Article  Google Scholar 

  41. Dietrich L., Lekszycki T., Turski K.: Problems of identification of mechanical characteristics of viscoelastic composites. Acta Mech. 126(1–4), 153–167 (1998)

    Article  MATH  Google Scholar 

  42. Dos Reis F., Ganghoffer J.F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)

    Article  Google Scholar 

  43. Eremeyev V.A., Pietraszkiewicz W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Eringen A.C.: Mechanics of Micromorphic Continua. Springer, New York (1968)

    Book  MATH  Google Scholar 

  45. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  46. Evdokymov N., Altenbach H., Eremeyev V.A.: Collapse criteria of foam cells under various loading. PAMM 11(1), 365–366 (2011)

    Article  Google Scholar 

  47. Federico S., Gasser T.C.: Nonlinear elasticity of biological tissues with statistical fibre orientation. J. R. Soc. Interface 7(47), 955–966 (2010)

    Article  Google Scholar 

  48. Federico S., Grillo A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mater. 44, 58–71 (2012)

    Article  Google Scholar 

  49. Frischmuth K., Kosiński W., Lekszycki T.: Free vibrations of finite-memory material beams. Int. J. Eng. Sci. 31(3), 385–395 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  50. Gabriele, S., Rizzi, N., Varano, V.: On the imperfection sensitivity of thin-walled frames. In: Civil-Comp Proceedings, p. 99 (2012)

  51. Gabriele, S., Rizzi, N., Varano, V.: A one-dimensional nonlinear thin walled beam model derived from Koiter shell theory. In: Civil-Comp Proceedings, p. 106 (2014)

  52. Gabriele, S., Rizzi, N., Varano, V.: A 1D nonlinear TWB model accounting for in plane cross-section deformation. Int. J. Solids Struct. (2016). doi:10.1016/j.ijsolstr.2016.04.017

  53. Giorgio I., Grygoruk R., Dell’Isola F., Steigmann D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  54. Goda I., Assidi M., Ganghoffer J.-F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)

    Article  Google Scholar 

  55. Goda I., Assidi M., Ganghoffer J.F.: A 3D elastic micropolar model of vertebral trabecular bone from lattice homogenization of the bone microstructure. Biomech. Model. Mechanobiol. 13(1), 53–83 (2014)

    Article  Google Scholar 

  56. Greco L., Cuomo M.: On the force density method for slack cable nets. Int. J. Solids Struct. 49(13), 1526–1540 (2012)

    Article  Google Scholar 

  57. Greco L., Cuomo M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Greco L., Cuomo M.: Consistent tangent operator for an exact Kirchhoff rod model. Contin. Mech. Thermodyn. 27(4), 861–877 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Greco L., Cuomo M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

    Article  MathSciNet  Google Scholar 

  60. Greco L., Impollonia N., Cuomo M.: A procedure for the static analysis of cable structures following elastic catenary theory. Int. J. Solids Struct. 51(7), 1521–1533 (2014)

    Article  Google Scholar 

  61. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  62. Grillo A., Federico S., Wittum G.: Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials. Int. J. Non-Linear Mech. 47(2), 388–401 (2012)

    Article  Google Scholar 

  63. Grillo A., Wittum G., Tomic A., Federico S.: Remodelling in statistically oriented fibre-reinforced materials and biological tissues. Math. Mech. Solids 20(9), 1107–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. Hans S., Boutin C.: Dynamics of discrete framed structures: a unified homogenized description. J. Mech. Mater. Struct. 3(9), 1709–1739 (2008)

    Article  Google Scholar 

  65. Harrison P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)

    Article  Google Scholar 

  66. Harrison P., Abdiwi F., Guo Z., Potluri P., Yu W.R.: Characterising the shear-tension coupling and wrinkling behaviour of woven engineering fabrics. Compos. Part A Appl. Sci. Manuf. 43(6), 903–914 (2012)

    Article  Google Scholar 

  67. Harrison P., Clifford M.J., Long A.C.: Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos. Sci. Technol. 64(10), 1453–1465 (2004)

    Article  Google Scholar 

  68. Härtel F., Harrison P.: Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics. Compos. Part A Appl. Sci. Manuf. 67, 61–69 (2014)

    Article  Google Scholar 

  69. Lekszycki T., Dell’Isola F.: A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. Z. Angew. Math. Mech. 92(6), 426–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Lekszycki T., Olhoff N., Pedersen J.J.: Modelling and identification of viscoelastic properties of vibrating sandwich beams. Compos. Struct. 22(1), 15–31 (1992)

    Article  Google Scholar 

  71. Luongo A., Zulli D., Piccardo G.: On the effect of twist angle on nonlinear galloping of suspended cables. Comput. Struct. 87(15), 1003–1014 (2009)

    Article  Google Scholar 

  72. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  73. Mindlin R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  74. Nadler B., Steigmann D.J.: A model for frictional slip in woven fabrics. C. R. Mec. 331(12), 797–804 (2003)

    Article  MATH  Google Scholar 

  75. Nikopour H., Selvadurai A.P.S.: Torsion of a layered composite strip. Compos. Struct. 95, 1–4 (2013)

    Article  Google Scholar 

  76. Nikopour H., Selvadurai A.P.S.: Concentrated loading of a fibre-reinforced composite plate: experimental and computational modeling of boundary fixity. Compos. Part B Eng. 60, 297–305 (2014)

    Article  Google Scholar 

  77. Pideri C., Seppecher P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Contin. Mech. Thermodyn. 9(5), 241–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  78. Pignataro, M., Ruta, G., Rizzi, N., Varano, V.: Effects of warping constraints and lateral restraint on the buckling of thin-walled frames. In: ASME 2009 International Mechanical Engineering Congress and Exposition, pp. 803–810. American Society of Mechanical Engineers, 2009

  79. Placidi L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  80. Placidi L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1), 119–137 (2016)

    Article  MathSciNet  Google Scholar 

  81. Placidi L., Andreaus U., Della Corte A., Lekszycki T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  82. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. (2016). doi:10.1007/s10665-016-9856-8

  83. Rinaldi A., Placidi L.: A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. ZAMM-Z. Angew. Math. Mech. 94(10), 862–877 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  84. Rizzi, N., Varano, V.: On the postbuckling analysis of thin-walled frames. In: Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing. Civil-Comp Press (2011)

  85. Rizzi N.L., Varano V.: The effects of warping on the postbuckling behaviour of thin-walled structures. Thin-Walled Struct. 49(9), 1091–1097 (2011)

    Article  Google Scholar 

  86. Rizzi N.L., Varano V., Gabriele S.: Initial postbuckling behavior of thin-walled frames under mode interaction. Thin-Walled Struct. 68, 124–134 (2013)

    Article  Google Scholar 

  87. Roveri N., Carcaterra A.: Damage detection in structures under traveling loads by Hilbert–Huang transform. Mech. Syst. Signal Process. 28, 128–144 (2012)

    Article  Google Scholar 

  88. Ruta G.C., Varano V., Pignataro M., Rizzi N.L.: A beam model for the flexural–torsional buckling of thin-walled members with some applications. Thin-Walled Struct. 46(7–9), 816–822 (2008)

    Article  Google Scholar 

  89. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys.-ZAMP. (2016). doi:10.1007/s00033-016-0650-2

  90. Scerrato, D., Zurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z. Angew. Math. Mech.-ZAMM. (2016). doi:10.1002/zamm201600066

  91. Selvadurai A.P.S., Nikopour H.: Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: experiments, theory and computations. Compos. Struct. 94(6), 1973–1981 (2012)

    Article  Google Scholar 

  92. Seppecher P., Alibert J.-J., Dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

    Article  Google Scholar 

  93. Solari G., Pagnini L.C., Piccardo G.: A numerical algorithm for the aerodynamic identification of structures. J. Wind Eng. Ind. Aerodyn. 69, 719–730 (1997)

    Article  Google Scholar 

  94. Steigmann D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Linear Mech. 47(7), 734–742 (2012)

    Article  Google Scholar 

  95. Steigmann D.J., Dell’Isola F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)

    Article  MathSciNet  Google Scholar 

  96. Steigmann D.J., Pipkin A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 335(1639), 419–454 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  97. Tomic A., Grillo A., Federico S.: Poroelastic materials reinforced by statistically oriented fibres - numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–1059 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  98. Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  99. Turco E.: Is the statistical approach suitable for identifying actions on structures. Comput. Struct. 83(25), 2112–2120 (2005)

    Article  Google Scholar 

  100. Turco E., Aristodemo M.: A three-dimensional B-spline boundary element. Comput. Methods Appl. Mech. Eng. 155(1), 119–128 (1998)

    Article  MATH  Google Scholar 

  101. Turco E., Caracciolo P.: Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements. Comput. Methods Appl. Mech. Eng. 190(5), 691–706 (2000)

    Article  MATH  Google Scholar 

  102. Turco, E., Dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. (2016). doi:10.1007/s00033-016-0681-8

  103. Yang Y., Ching W.Y., Misra A.: Higher-order continuum theory applied to fracture simulation of nanoscale intergranular glassy film. J. Nanomech. Micromechan. 1(2), 60–71 (2011)

    Article  Google Scholar 

  104. Yang Y., Misra A.: Higher-order stress-strain theory for damage modeling implemented in an element-free Galerkin formulation. Comput. Model. Eng. Sci. (CMES) 64(1), 1–36 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Giorgio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgio, I. Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67, 95 (2016). https://doi.org/10.1007/s00033-016-0692-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-016-0692-5

Mathematics Subject Classification

Keywords

Navigation