Skip to main content
Log in

An energy-based method to determine material constants in nonlinear rheology with applications

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Many polymer-type materials show a rate-dependent and nonlinear rheological behavior. Such a response may be modeled by using a series of spring-dashpot systems. However, in order to cover different time scales the number of systems may become unreasonably large. A more appropriate treatment based on continuum mechanics will be presented herein. This approach uses representation theorems for deriving material equations and allows for a systematic increase in modeling complexity. Moreover, we propose an approach based on energy to determine thematerial parameters.This method results in a simple linear regression problemeven for highly nonlinearmaterial equations. Therefore, the inverse problem leads to a unique solution. The significance of the proposed method is that the stored and dissipated energies necessary for the procedure are measurable quantities. We apply the proposed method to a “semi-solid” material and measure its material parameters by using a simple-shear rheometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abali, B.E.: Thermodynamically compatible modeling, determination of material parameters, and numerical analysis of nonlinear rheological materials. Ph.D. thesis, Technische Universität Berlin, Institute of Mechanics (2014)

  2. Abali, B.E.: Supply code, Computational Reality, Technical University of Berlin, Institute of Mechanics, Chair of Continuum Mechanics and Material Theory. http://www.lkm.tu-berlin.de/ComputationalReality/ (2015)

  3. Adkins J.: Symmetry relations for orthotropic and transversely isotropic materials. Archive Ration. Mech. Anal. 4, 193–213 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Adolf D., Chambers R., Caruthers J.: Extensive validation of a thermodynamically consistent, nonlinear viscoelastic model for glassy polymers. Polymer 45(13), 4599–4621 (2004)

    Article  Google Scholar 

  5. Bird R.B., Wiest J.M.: Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech. 27(1), 169–193 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Cho K., Hyun K., Ahn K., Lee S.: A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49(3), 747–758 (2005)

    Article  ADS  Google Scholar 

  7. Colby, R.H.: Official symbols and nomenclature of the society of rheology. J. Rheol (1978-present). 57(4) (2013)

  8. Coleman B., Noll W.: The thermodynamics of elastic materials with heat conduction and viscosity. Archive Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ewoldt R., Hosoi A., McKinley G.: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52(6), 1427–1458 (2008)

    Article  ADS  Google Scholar 

  10. Ewoldt R., Winter P., Maxey J., McKinley G.: Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheologica Acta 49(2), 191–212 (2010)

    Article  Google Scholar 

  11. GNU Public: Gnu general public license. http://www.gnu.org/copyleft/gpl.html (2007)

  12. de Groot S.R., Mazur P.: Non-equilibrium Thermodynamics. Dover Publications, New York (1984)

    MATH  Google Scholar 

  13. Hunter J.D.: Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Article  Google Scholar 

  14. Jou D., Casas-Vazquez J., Lebon G.: Extended irreversible thermodynamics revisited (1988–98). Rep. Prog. Phys. 62(7), 1035–1142 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  15. Klein C., Spiess H., Calin A., Balan C., Wilhelm M.: Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40(12), 4250–4259 (2007)

    Article  ADS  Google Scholar 

  16. McKennell R.: Cone-plate viscometer, comparison with coaxial cylinder viscometer. Anal. Chem. 28(11), 1710–1714 (1956)

    Article  Google Scholar 

  17. Müller I.: The coldness, a universal function in thermoelastic bodies. Archive Ration. Mech. Anal. 41(5), 319–332 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Müller W.H.: An Excursion to Continuum Mechanics. Springer, Berlin (2014)

    Google Scholar 

  19. Oliphant T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007)

    Article  Google Scholar 

  20. Pobedrya B.E.: Nonlinear viscoelasticity. Mech. Compos. Mater. 1, 18–23 (1965)

  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes in C, vol. 2. Citeseer (1996)

  22. Smith G.: Further results on the strain-energy function for anisotropic elastic materials. Archive Ration. Mech. Anal. 10(1), 108–118 (1962)

    Article  ADS  MATH  Google Scholar 

  23. Smith G., Rivlin R.: Stress-deformation relations for anisotropic solids. Archive Ration. Mech. Anal. 1(1), 107–112 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Smith, G., Rivlin, R.: The strain-energy function for anisotropic elastic materials. Transactions of the American Mathematical Society, pp. 175–193 (1958)

  25. Spencer A., Rivlin R.: Further results in the theory of matrix polynomials. Archive Ration. Mech. Anal. 4, 214–230 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Spencer A.J.M.: Continuum Physics, vol. I—Mathematics. Academic Press, New York and London (1971)

    Google Scholar 

  27. Steffe J.F.: Rheological Methods in Food Process Engineering. Freeman Press, Cambridge (1996)

    Google Scholar 

  28. Strang G.: Linear Algebra and Its Applications. Academic Press, Inc, New York (1980)

    MATH  Google Scholar 

  29. Truesdell, C., Toupin, R.A.: Encyclopedia of physics, volume III/1, principles of classical mechanics and field theory, chap. The classical field theories, pp. 226–790. Springer, Berlin/Göttingen/Heidelberg (1960)

  30. Tschoegl N.W.: The phenomenological Theory of Linear Viscoelastic Behavior: An Introduction. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  31. Wilhelm M.: Fourier-transform rheology. Macromol. Mater. Eng. 287(2), 83–105 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Emek Abali.

Additional information

Communicated by Andreas Öchsner.

The coauthor C.-C. Wu has written this paper in Technische Universität Berlin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abali, B.E., Wu, CC. & Müller, W.H. An energy-based method to determine material constants in nonlinear rheology with applications. Continuum Mech. Thermodyn. 28, 1221–1246 (2016). https://doi.org/10.1007/s00161-015-0472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0472-z

Keywords

Navigation