Skip to main content
Log in

Granular micromechanics based micromorphic model predicts frequency band gaps

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Granular materials are typically characterized by complex structure and composition. Continuum modeling, therefore, remains the mainstay for describing properties of these material systems. In this paper, we extend the granular micromechanics approach by considering enhanced kinematic analysis. In this analysis, a decomposition of the relative movements of interacting grain pairs into parts arising from macro-scale strain as well as micro-scale strain measures is introduced. The decomposition is then used to formulate grain-scale deformation energy functions and derive inter-granular constitutive laws. The macro-scale deformation energy density is defined as a summation of micro-scale deformation energy defined for each interacting grain pair. As a result, a micromorphic continuum model for elasticity of granular media is derived and applied to investigate the wave propagation behavior. Dispersion graphs for different cases and different ratios between the microscopic stiffness parameters have been presented. It is seen that the model has the capability to present band gaps over a large range of wave numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cosserat E., Cosserat F.: Theory of Deformable Bodies. Scientific Library A. Hermann and Sons, Paris (1909)

    MATH  Google Scholar 

  2. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  3. Toupin R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eringen A.C.: Microcontinuum Field Theories: Foundations and Solids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  5. Green A.E., Rivlin R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17(2), 113–147 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Germain P.: Method of virtual power in continuum mechanics. 2. Microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973). doi:10.1137/0125053

    Article  MathSciNet  MATH  Google Scholar 

  7. Navier C.L.: Sur les lois de l’equilibre et du mouvement des corps solides elastiques. Memoire de l’Academie Royale Sci. 7, 375–393 (1827)

    Google Scholar 

  8. Cauchy, A.-L.: Sur l’equilibre et le mouvement d’un systeme de points materiels sollicites par des forces d’attraction ou de repulsion mutuelle. Excercises de Mathematiques 3:188–212 (1826–1830)

  9. dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola. Mech. Math. Solids (2013). doi:10.1177/1081286513509811

  10. Auffray, N., dell’Isola, F., Eremeyev, V., Madeo, A., Rosi, G.: Analytical continuum mechanics á la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math. Mech. Solids (2013, accepted)

  11. Nguyen V.P., Stroeven M., Sluys L.J.: Multiscale continuous and discontinuous modeling of heterogeneous materials: a review on recent developments. J. Multiscale Model. 3(04), 229–270 (2011)

    Article  MathSciNet  Google Scholar 

  12. Placidi L., Hutter K.: Thermodynamics of polycrystalline materials treated by the theory of mixtures with continuous diversity. Continuum Mech. Thermodyn. 17(6), 409–451 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Placidi L., Greve R., Seddik H., Faria S.H.: Continuum-mechanical, anisotropic Flow model for polar ice masses, based on an anisotropic flow enhancement factor. Continuum Mech. Thermodyn. 22(3), 221–237 (2010)

    Article  MATH  ADS  Google Scholar 

  14. Misra, A., Singh, V.: Nonlinear granular micromechanics model for multi-axial rate-dependent behavior. Int J Solids Struct. (2014). doi:10.1016/j.ijsolstr.2014.02.034

  15. Misra, A., Singh, V.: Thermomechanics based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Continuum Mech. Thermodyn. (2014). doi:10.1007/s00161-014-0360-y

  16. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015). doi:10.1177/1081286515576821

  17. Chang C.S., Misra A.: Theoretical and experimental-study of regular packings of granules. J. Eng. Mech. ASCE 115(4), 704–720 (1989)

    Article  Google Scholar 

  18. Chang C.S., Misra A.: Packing structure and mechanical-properties of granulates. J. Eng. Mech. ASCE 116(5), 1077–1093 (1990)

    Article  Google Scholar 

  19. Digby P.J.: The effective elastic moduli of porous granular rocks. J. Appl. Mech. 48, 803–808 (1981)

    Article  MATH  ADS  Google Scholar 

  20. Walton K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids 35, 213–226 (1987)

    Article  MATH  ADS  Google Scholar 

  21. Deresiewicz H.: Stress-strain relations for a simple model of a granular medium. J. Appl. Mech. 25, 402–406 (1958)

    MATH  Google Scholar 

  22. Duffy J., Mindlin R.D.: Stress-strain relations of a granular medium. J. Appl. Mech. 24(4), 585–893 (1957)

    MathSciNet  Google Scholar 

  23. Chang C.S., Hicher P.Y.: An elasto-plastic model for granular materials with microstructural consideration. Int. J. Solids Struct. 42(14), 4258–4277 (2005). doi:10.1016/j.ijsolstr.2004.09.021

    Article  MATH  Google Scholar 

  24. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mech. Thermodyn. 1–19 (2014). doi:10.1007/s00161-014-0405-2

  25. Misra A., Poorsolhjouy P.: Micro-macro scale instability in 2D regular granular assemblies. Continuum Mech. Thermodyn. 27(1–2), 63–82 (2013). doi:10.1007/s00161-013-0330-9

    MathSciNet  ADS  Google Scholar 

  26. Chang C.S., Yin Z.Y., Hicher P.Y.: Micromechanical analysis for interparticle and assembly instability of sand. J. Eng. Mech. ASCE. 137(3), 155–168 (2011)

    Article  Google Scholar 

  27. Chang C.S., Gao J.: 2nd-gradient constitutive theory for granular material with random packing structure. Int. J. Solids Struct. 32(16), 2279–2293 (1995)

    Article  MATH  Google Scholar 

  28. Suiker A.S.J., de Borst R., Chang C.S.: Micro-mechanical modelling of granular material. Part 1: derivation of a second-gradient micro-polar constitutive theory. Acta Mech. 149(1–4), 161–180 (2001)

    Article  MATH  Google Scholar 

  29. Yang Y., Misra A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012). doi:10.1016/j.ijsolstr.2012.05.024

    Article  Google Scholar 

  30. Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30(18), 2547–2566 (1993)

    Article  MATH  Google Scholar 

  31. Agnolin I., Jenkins J.T., La Ragione L.: A continuum theory for a random array of identical, elastic, frictional disks. Mech. Mater. 38(8–10), 687–701 (2006)

    Article  Google Scholar 

  32. Misra A., Jiang H.: Measured kinematic fields in the biaxial shear of granular materials. Comput. Geotech. 20(3–4), 267–285 (1997). doi:10.1016/S0266-352x(97)00006-2

    Article  Google Scholar 

  33. Richefeu V., Combe G., Viggiani G.: An experimental assessment of displacement fluctuations in a 2D granular material subjected to shear. Geotech. Lett. 2, 113–118 (2012). doi:10.1680/geolett.12.00029

    Article  Google Scholar 

  34. Misra A.: Particle Kinematics in Sheared Rod Assemblies Physics of Dry Granular Media, pp. 261–266. Springer, Berlin (1998)

    Book  Google Scholar 

  35. Jenkins J., Johnson D., La Ragione L., Makse H.: Fluctuations and the effective moduli of an isotropic, random aggregate of identical, frictionless spheres. J. Mech. Phys. Solids 53(1), 197–225 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Alibert J.J., Seppecher P., Dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003). doi:10.1177/108128603029658

    Article  MathSciNet  MATH  Google Scholar 

  37. Seppecher P., Alibert J.-J., dell’Isola F.: Linear elastic trusses leading to continua with exotic mechanical interactions. J. Phys. Conf. Ser. 319(1), 012018 (2011)

    Article  ADS  Google Scholar 

  38. Andreaus U., Giorgio I., Lekszycki T.: A 2-D continuum model of a mixture of bone tissue and bio-resorbable material for simulating mass density redistribution under load slowly variable in time. ZAMM-Z Angew Math Me 94(12), 978–1000 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Andreaus U., Chiaia B., Placidi L.: Soft-impact dynamics of deformable bodies. Continuum Mech. Thermodyn. 25(2–4), 375–398 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  40. Andreaus, U., Placidi, L., Rega, G.: Microcantilever dynamics in tapping mode atomic force microscopy via higher eigenmodes analysis. J. Appl. Phys. 113(22) (2013)

  41. Kanatani K.I.: Distribution of directional-data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mardia K.V., Jupp P.E.: Directional Statistics. Wiley, New York (2009)

    MATH  Google Scholar 

  43. dell’Isola F., Sciarra G., Vidoli S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009). doi:10.1098/rspa.2008.0530

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Love A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  45. Madeo, A., Neff, P., Ghiba, I.-D., Placidi, L., Rosi, G.: Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps. Continuum Mech. Thermodyn. 1–20 (2013). doi:10.1007/s00161-013-0329-2

  46. Ghiba, I.-D., Neff, P., Madeo, A., Placidi, L., Rosi, G.: The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics. Math. Mech. Solids. arXiv preprint arXiv:1308.3762 (2013). doi:10.1177/1081286513516972

  47. Neff P., Ghiba I.-D., Madeo A., Placidi L., Rosi G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2013). doi:10.1007/s00161-013-0322-9

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. Merkel, A., Tournat, V., Gusev, V.: Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys. Rev. E 82(3) (2010)

  49. Merkel, A., Tournat, V., Gusev, V.: Experimental evidence of rotational elastic waves in granular phononic crystals. Phys. Rev. Lett. 107(22) (2011)

  50. Zhu R., Huang H.H., Huang G.L., Sun C.T.: Microstructure continuum modeling of an elastic metamaterial. Int. J. Eng. Sci. 49(12), 1477–1485 (2011)

    Article  Google Scholar 

  51. Placidi L., Rosi G., Giorgio I., Madeo A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids. 19(5), 555–578 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. dell’Isola F., Madeo A., Placidi L.: Linear plane wave propagation and normal transmission and reflection at discontinuity surfaces in second gradient 3D continua. ZAMM-Z Angew Math Me. 92(1), 52–71 (2012). doi:10.1002/zamm.201100022

    Article  MathSciNet  MATH  Google Scholar 

  53. Maurini C., dell’Isola F., Pouget J.: On models of layered piezoelectric beams for passive vibration control. J. Phys. IV 115, 307–316 (2004)

    MATH  Google Scholar 

  54. Maurini C., Pouget J., dell’Isola F.: Extension of the Euler–Bernoulli model of piezoelectric laminates to include 3D effects via a mixed approach. Comput. Struct. 84(22–23), 1438–1458 (2006)

    Article  Google Scholar 

  55. Porfiri M., dell’Isola F., Santini E.: Modeling and design of passive electric networks interconnecting piezoelectric transducers for distributed vibration control. Int. J. Appl. Electrom. 21(2), 69–87 (2005)

    Google Scholar 

  56. Vidoli S., dell’Isola F.: Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks. Eur. J. Mech. A-Solids 20(3), 435–456 (2001)

    Article  MATH  ADS  Google Scholar 

  57. Madeo A., Placidi L., Rosi G.: Towards the design of metamaterials with enhanced damage sensitivity: second gradient porous materials. Res. Nondestruct. Eval. 25(2), 99–124 (2014)

    Article  ADS  Google Scholar 

  58. dell’Isola F., Vidoli S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 68(1), 1–19 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Greco L., Impollonia N., Cuomo M.: A procedure for the static analysis of cable structures following elastic catenary theory. Int. J. Solids Struct. 51(7–8), 1521–1533 (2014)

    Article  Google Scholar 

  60. Andreaus U., Baragatti P.: Cracked beam identification by numerically analysing the nonlinear behaviour of the harmonically forced response. J. Sound Vib. 330(4), 721–742 (2011)

    Article  ADS  Google Scholar 

  61. Andreaus U., Baragatti P.: Experimental damage detection of cracked beams by using nonlinear characteristics of forced response. Mech. Syst. Signal Process. 31, 382–404 (2012)

    Article  ADS  Google Scholar 

  62. Ferretti M., Madeo A., Dell’Isola F., Boisse P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Mathematik und Physik 65(3), 587–612 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  63. Andreaus U., Colloca M., Iacoviello D.: An optimal control procedure for bone adaptation under mechanical stimulus. Control Eng. Pract. 20(6), 575–583 (2012)

    Article  Google Scholar 

  64. Andreaus U., Colloca M., Iacoviello D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Programs Biomed. 113(1), 80–91 (2014)

    Article  Google Scholar 

  65. Andreaus, U., Giorgio, I., Madeo, A.: Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und Physik 1–29 (2014)

  66. Altenbach H., Eremeyev V.A., Lebedev L.P., Rendon L.A.: Acceleration waves and ellipticity in thermoelastic micropolar media. Arch. Appl. Mech. 80(3), 217–227 (2010). doi:10.1007/s00419-009-0314-1

    Article  MATH  ADS  Google Scholar 

  67. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Continuum Mech. Thermodyn. 1–16 (2014). doi:10.1007/s00161-014-0338-9

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Misra.

Additional information

Communicated by Victor Eremeyev, Peter Schiavone and Francesco dell’Isola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, A., Poorsolhjouy, P. Granular micromechanics based micromorphic model predicts frequency band gaps. Continuum Mech. Thermodyn. 28, 215–234 (2016). https://doi.org/10.1007/s00161-015-0420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-015-0420-y

Keywords

Navigation