Skip to main content
Log in

Error analysis for European IGS stations

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Each of the GPS time series that describes the changes of topocentric components consists of a deterministic and a stochastic part, whose character influences the errors of the deterministic parameters. As to the uncertainties of reliable velocities of permanent satellite station systems, surveys that estimate and take into account any dependencies that may affect subsequent operational efficiency are very important. For this analysis, we used 42 stations from the IGS (International GNSS Service) network from Europe, processed at the Military University of Technology EUREF Permanent Network Local Analysis Centre (MUT LAC). The deterministic part of the GPS time series was removed using the least squares method. The seasonal periods in topocentric components were determined assuming the existence of the residual Chandler oscillation (1.67 cpy), as well as the annual tropical (1 cpy) and draconitic (1.04 cpy) oscillations with their harmonics up to 4th. We assumed the character of the residue as a combination of white and powerlaw noise. The obtained results show, that in the case of the European sub-network of IGS stations we are dealing with the coloured noise between white and flicker noise with the amplitudes between 3 to 6 mm/year-k/4 for horizontal components and between 6 to 15 mm/year-κ/4 for the vertical ones, where κ is a spectral index. Finally, we showed that the amplitudes and spectral indices of noise are reduced after performing a spatio-temporal filtering. All the elicited results referred to the uncertainties of velocities by estimating them before and after filtration and the simulation of their values for different lengths of the time series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew D.C., 1992. The time-domain behaviour of power-law noises. Geophys. Res. Lett., 19, 333–336.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., 2013. On the nature of GPS draconitic year periodic pattern in multivariate position time series. J. Geophys. Res., 118, 2500–2511, DOI: 10.1002/jgrb.50199.

    Article  Google Scholar 

  • Amiri-Simkooei A.R., Tiberius C.C.J.M. and Teunissen P.J.G., 2007. Assessment of noise in GPS coordinate time series: Methodology and results. J. Geophys. Res., 112, B07413, DOI: 10.1029/2006JB004913.

    Google Scholar 

  • Beavan J., 2005. Noise properties of continuous GPS data from concrete pillar geodetic monuments in New Zealand and comparison with data from U.S. deep drilled braced monuments. J. Geophys. Res., 110, B08410, DOI: 10.1029/2005JB003642.

    Google Scholar 

  • Blewitt G. and Lavallee D., 2002. Effect of annual signals on geodetic velocity. J. Geophys. Res., 107, 2145, DOI: 10.1029/2001JB000570.

    Article  Google Scholar 

  • Bogusz J. and Figurski M., 2014. Annual signals observed in regional GPS networks. Acta Geodyn. Geomater., 11, 125–131, DOI: 10.13168/AGG.2014.0003.

    Google Scholar 

  • Bogusz J., Gruszczynski M., Figurski M. and Klos A., 2015a. Spatio-temporal filtering for determination of common mode error in regional GNSS networks. Open Geosci., 7, 140–148, DOI: 0.1515/geo-2015-0021.

    Article  Google Scholar 

  • Bogusz J., Klos A., Figurski M. and Kujawa M., 2015b. Investigation of long-range dependencies in daily GPS solutions. Surv. Rev., DOI: 10.1179/1752270615Y.0000000022.

    Google Scholar 

  • Bos M.S., Fernandes R.M.S., Williams S.D.P. and Bastos L., 2008. Fast error analysis of continuous GPS observations. J. Geodesy, 82, 157–166, DOI: 10.1007/s00190-007-0165-x.

    Article  Google Scholar 

  • Bruni S., Zerbini S., Raicich F., Errico M. and Santi E., 2014. Detecting discontinuities in GNSS coordinate time series with STARS: case study, the Bologna and Medicina GPS sites. J. Geodesy, 88, 1203–1214, DOI: 10.1007/s00190-014-0754-4.

    Article  Google Scholar 

  • Bruyninx C., Altamimi Z., Caporali A., Kenyeres A., Lidberg M., Stangl G. and Torres J.A., 2013. Guidelines for EUREF Densifications. ftp://epncb.oma.be/pub/general/. Downloaded on 23.12.2014.

    Google Scholar 

  • Collilieux X., Altamimi Z., Coulot D., Ray J. and Sillard P., 2007. Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. J. Geophys. Res., 112, B12403, DOI: 10.1029/2007JB004933.

    Article  Google Scholar 

  • Dach R., Hugentobler U., Fridez P. and Meindl M., 2007. Bernese GPS Software Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.

    Google Scholar 

  • Davis J.L., Wernicke B.P. and Tamisiea M.E., 2012. On seasonal signals in geodetic time series. J. Geophys. Res., 117, B01403, DOI: 10.1029/2011JB008690.

    Google Scholar 

  • Dong D., Fang P., Bock Y., Webb F., Prawirodirdjo L., Kedar S. and Jamason P., 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res., 111, B03405, DOI: 10.1029/2005JB003806.

    Google Scholar 

  • Fukunaga K., 1990. Introduction to Statistical Pattern Recognition, Elsevier, New York.

    Google Scholar 

  • Gazeaux J., Williams S., King M., Bos M., Dach R., Deo M., Moore A.W., Ostini L., Petrie E., Roggero M., Teferle F.N., Olivares G. and Webb F.H., 2013. Detecting offsets in GPS time series: first results from the detection of offsets in GPS experiment. J. Geophys. Res., 118, 2397–2407, DOI: 10.1002/jgrb.50152.

    Article  Google Scholar 

  • Gross R., Beutler G. and Plag H.-P., 2009. Integrated scientific and societal user requirements and functional specifications for the GGOS. In: Plag H.-P. and Pearlman M. (Eds), Global Geodetic Observing System. Springer-Verlag, Dordrecht, Heidelberg, London, New York, 209–224, DOI 10.1007/978-3-642-02687-4.

    Chapter  Google Scholar 

  • Hammond W.C. and Plag H.P., 2005. Assessing land motion of Venice, Italy with GPS: Effects of regional filtering on vertical rate estimates. EOS Trans. AGU, 86, Fall Meeting Supplement, Abstract G41B-0359.

    Google Scholar 

  • He X., Hua X., Yu K., Xuan W., Lu T., Zhang W. and Chen X., 2015. Accuracy enhancement of GPS time series using principal component analysis and block spatial filtering. Adv. Space Res., 55, 1316–1327, DOI: 10.1016/j.asr.2014.12.016.

    Article  Google Scholar 

  • Klos A., Bogusz J., Figurski M. and Kosek W., 2014a. Uncertainties of geodetic velocities from permanent GPS observations: The Sudeten case study. Acta Geodyn. Geomater., 11, 201–209, DOI: 10.13168/AGG.2014.0005.

    Google Scholar 

  • Klos A., Bogusz J., Figurski M. and Kosek W., 2014b. Irregular variations in the GPS time series by the probability and noise analysis. Surv. Rev., 47, 163–173, DOI: 10.1179/1752270614Y.0000000133.

    Article  Google Scholar 

  • Klos A., Bogusz J., Figurski M., Kosek W., 2015. On the handling of outliers in the GNSS time series by means of the noise and probability analysis. In: Rizos C. and Willis P. (Eds), IAG 150 Years. International Association of Geodesy Symposia, 143. Springer-Verlag, Heidelberg, Germany, DOI: 10.1007/1345_2015_78 (in print).

    Google Scholar 

  • Langbein J. and Johnson H., 1997. Correlated errors in geodetic time series: Implications for timedependent deformation. J. Geophys. Res., 102, 591–603.

    Article  Google Scholar 

  • Nikolaidis R., 2002. Observation of Geodetic and Seismic Deformation with the Global Positioning System. Ph.D. Thesis, University of California, San Diego, CA.

    Google Scholar 

  • Prawirodirdjo L., Ben-Zion Y. and Bock Y., 2006. Observation and modeling of thermoelasticstrain in Southern California Integrated GPS Network daily position time series. J. Geophys. Res., 111, DOI: 10.1029/2005JB003716.

  • Rundle J.B., Klein W., Tiampo K. and Gross S., 2000. Linear pattern dynamics in nonlinear threshold systems. Phys. Rev. E, 61, 2418–2431.

    Article  Google Scholar 

  • Teferle F.N., 2003. Strategies for Long-Term Monitoring of Tide Gauges with GPS. Ph.D. Thesis. University of Nottingham, Nottingham, U.K.

    Google Scholar 

  • Teferle F.N., Bingley R.M., Orliac E.J., Williams S.D.P., Woodworth P., McLaughlin D., Baker T.F., Shennan I., Milne G.A., Bradley S.A. and Hansen D., 2009. Crustal motions in Great Britain: Evidence from continuous GPS, absolute gravity and Holocene sea-level data. Geophys. J. Int., 178, 23–46, DOI: 10.1111/j.1365-1246X.2009.04185.x.

    Article  Google Scholar 

  • Wang W., Zhao B., Wang Q. and Yang S., 2012. Noise analysis of continuous GPS coordinate time series for CMONOC. Adv. Space Res., 49, 943–956, DOI: 10.1016/j.asr.2011.11.032.

    Article  Google Scholar 

  • Wdowinski S., Bock Y., Zhang J., Fang P. and Genrich J., 1997. Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res., 102, 18057–18070, DOI: 10.1029/97JB01378.

    Article  Google Scholar 

  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F. and Wobbe F., 2013. Generic mapping tools: improved version released. EOS Trans. AGU, 94, 409–410.

    Article  Google Scholar 

  • Williams S.D.P., 2008. CATS: GPS coordinate time series analysis software. GPS Solut., 12, 147–153, DOI: 10.1007/s10291-007-0086-4.

    Article  Google Scholar 

  • Williams S.D.P., Bock Y., Fang P., Jamason P., Nikolaidis R.M., Prawirodirdjo L., Miller M. and Johnson D., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res., 109, B03412, DOI: 10.1029/2003JB002741, 2004.

    Google Scholar 

  • Zhang J., Bock Y., Johnson H., Fang P., Williams S., Genrich J., Wdowinski S. and Behr J., 1997. Southern California permanent GPS geodetic array: Error analysis of daily position estimates and site velocities. J. Geophys. Res., 102, 18035–18055.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Klos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klos, A., Bogusz, J., Figurski, M. et al. Error analysis for European IGS stations. Stud Geophys Geod 60, 17–34 (2016). https://doi.org/10.1007/s11200-015-0828-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-015-0828-7

Keywords

Navigation