Pure and Applied Geophysics

, Volume 175, Issue 5, pp 1823–1840 | Cite as

Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models

  • Anna Klos
  • Marta GruszczynskaEmail author
  • Machiel Simon Bos
  • Jean-Paul Boy
  • Janusz Bogusz


A reliable subtraction of seasonal signals from the Global Positioning System (GPS) position time series is beneficial for the accuracy of derived velocities. In this research, we propose a two-stage solution of the problem of a proper determination of seasonal changes. We employ environmental loading models (atmospheric, hydrological and ocean non-tidal) with a dominant annual signal of amplitudes in their superposition of up to 12 mm and study the seasonal signal (annual and semi-annual) estimates that change over time using improved singular spectrum analysis (ISSA). Then, this deterministic model is subtracted from GPS position time series. We studied data from 376 permanent International GNSS Service (IGS) stations, derived as the official contribution to International Terrestrial Reference Frame (ITRF2014) to measure the influence of applying environmental loading models on the estimated vertical velocity. Having removed the environmental loadings directly from the position time series, we noticed the evident change in the power spectrum for frequencies between 4 and 80 cpy. Therefore, we modelled the seasonal signal in environmental models using the ISSA approach and subtracted it from GPS vertical time series to leave the noise character of the time series intact. We estimated the velocity dilution of precision (DP) as a ratio between classical Weighted Least Squares and ISSA approach. For a total number of 298 out of the 376 stations analysed, the DP was lower than 1. This indicates that when the ISSA-derived curve was removed from the GPS data, the error of velocity becomes lower than it was before.


GPS seasonal signals singular spectrum analysis environmental loadings ITRF2014 dilution of precision 



Anna Klos, Marta Gruszczynska and Janusz Bogusz are financed by the Polish National Science Centre, Grant No. UMO-2014/15/B/ST10/03850. Machiel Simon Bos is financially supported by Portuguese funds through FCT in the scope of the Project IDL-FCT-UID/GEO/50019/2013 and Grant Number SFRH/BPD/89923/2012. Jean-Paul Boy is partly funded by CNES (Centre National d’Etudes Spatiales), through its TOSCA program. Loading time series used here are available at EOST/IPGS loading service ( Maps and charts were plotted in the Generic Mapping Tool (Wessel et al. 2013). IGS time series were accessed from


  1. Agnew, D. C., & Larson, K. M. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11(1), 71–76. doi: 10.1007/s10291-006-0038-4.CrossRefGoogle Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi: 10.1109/TAC.1974.1100705.CrossRefGoogle Scholar
  3. Allen, M. R., & Robertson, A. W. (1996). Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, 772–786. doi: 10.1007/s003820050142.CrossRefGoogle Scholar
  4. Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modelling nonlinear station motions. Journal of Geophysical Research: Solid Earth. doi: 10.1002/2016JB013098.Google Scholar
  5. Amiri-Simkooei, A. R. (2013). On the nature of GPS draconitic year periodic pattern in multivariate position time series. Journal of Geophysical Research: Solid Earth, 118(5), 2500–2511. doi: 10.1002/jgrb.50199.Google Scholar
  6. Blewitt, G., & Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107, ETG 9-1–ETG 9-11. doi: 10.1029/2001JB000570.CrossRefGoogle Scholar
  7. Blewitt, G., Lavallée, D., Clarke, P., & Nurutdinov, K. (2001). A new global mode of Earth deformation: seasonal cycle detected. Science, 294, 2342–2345. doi: 10.1126/science.1065328.CrossRefGoogle Scholar
  8. Bogusz, J., & Figurski, M. (2014). Annual signals observed in regional GPS networks. Acta Geodynamica et Geomaterialia, 11(2), 125–131. doi: 10.13168/AGG.2014.0003.Google Scholar
  9. Bogusz, J., Gruszczynska, M., Klos, A., & Gruszczynski, M. (2015). Non-parametric estimation of seasonal variations in GPS-derived time series. Springer IAG Symposium Series, 146. Springer Berlin Heidelberg, doi: 10.1007/1345_2015_191.
  10. Bogusz, J., & Klos, A. (2016). On the significance of periodic signals in noise analysis of GPS station coordinates time series. GPS Solutions. doi: 10.1007/s10291-015-0478-9.Google Scholar
  11. Bogusz, J., Klos, A., Grzempowski, P., & Kontny, B. (2014). Modelling velocity field in regular grid on the area of Poland on the basis of the velocities of European permanent stations. Pure and Applied Geophysics, 171(6), 809–833. doi: 10.1007/s00024-013-0645-2.CrossRefGoogle Scholar
  12. Bos, M. S., Bastos, L., & Fernandes, R. M. S. (2010). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series. Journal of Geodynamics, 49, 205–209. doi: 10.1016/j.jog.2009.10.005.CrossRefGoogle Scholar
  13. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2008). Fast error analysis of continuous GPS observations. Journal of Geodesy, 82, 157–166. doi: 10.1007/s00190-007-0165-x.CrossRefGoogle Scholar
  14. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2013). Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4), 351–360. doi: 10.1007/s00190-012-0605-0.CrossRefGoogle Scholar
  15. Broomhead, D. S., & King, G. P. (1986). Extracting qualitative dynamics from experimental data. Physica, 20(2–3), 217–236. doi: 10.1016/0167-2789(86)90031-X.Google Scholar
  16. Chen, Q., van Dam, T., Sneeuw, N., Collilieux, X., Weigelt, M., & Rebischungc, P. (2013). Singular spectrum analysis for modelling seasonal signals from GPS time series. Journal of Geodynamics, 72, 25–35. doi: 10.1016/j.jog.2013.05.005.CrossRefGoogle Scholar
  17. Collilieux, X., Altamimi, Z., Coulot, D., Ray, J., & Sillard, P. (2007). Comparison of very long baseline interferometry, GPS, and satellite laser ranging height residuals from ITRF2005 using spectral and correlation methods. Journal of Geophysical Research, 112, B12403. doi: 10.1029/2007JB004933.CrossRefGoogle Scholar
  18. Collilieux, X., van Dam, T., Ray, J., Coulot, D., Métivier, L., & Altamimi, Z. (2012). Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. Journal of Geodesy, 86, 1–14. doi: 10.1007/s00190-011-0487-6.CrossRefGoogle Scholar
  19. Dach, R., Boehm, J., Lutz, S., Steigenberger, P., & Beutler, G. (2011). Evaluation of the impact of atmospheric pressure loading modelling on GNSS data analysis. Journal of Geodesy, 85(2), 75–91. doi: 10.1007/s00190-010-0417-z.CrossRefGoogle Scholar
  20. Davis, J. L., Wernicke, B. P., & Tamisiea, M. E. (2012). On seasonal signals in geodetic time series. Journal of Geophysical Research, 117(B1), B01403. doi: 10.1029/2011JB008690.CrossRefGoogle Scholar
  21. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137, 553–597. doi: 10.1002/qj.828.CrossRefGoogle Scholar
  22. Dill, R., & Dobslaw, H. (2013). Numerical simulations of global-scale high-resolution hydrological crustal deformations. Journal of Geophysical Research: Solid Earth, 118, 5008–5017. doi: 10.1002/jgrb.50353.Google Scholar
  23. Dong, D., Fang, P., Bock, Y., Cheng, M. K., & Miyazaki, S. (2002). Anatomy of apparent seasonal variations from GPS-derived site position time series. Journal of Geophysical Research, 107(B4), 2075. doi: 10.1029/2001JB000573.CrossRefGoogle Scholar
  24. Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356. doi: 10.1016/0031-9201(81)90046-7.CrossRefGoogle Scholar
  25. Farrell, W. E. (1972). Deformation of the earth by surface loads. Reviews of Geophysics, 10(761–797), 1972.Google Scholar
  26. Fratepietro, F., Baker, T. F., Williams, S. D. P., & Van Camp, M. (2006). Ocean loading deformations caused by storm surges on the northwest European shelf. Geophysical Research Letters, 33, L06317. doi: 10.1029/2005GL025475.CrossRefGoogle Scholar
  27. Freymueller, J.T. (2009). Seasonal position variations and regional Reference frame realization. In H. Drewes (Ed.), Geodetic reference frames, International Association of Geodesy Symposia 134 (pp. 191–196). Springer Berlin Heidelberg, doi: 10.1007/978-3-642-00860-3_30.
  28. Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., et al. (2002). Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1-1–1-41. doi: 10.1029/2000RG000092.CrossRefGoogle Scholar
  29. Gruszczynska, M., Klos, A., Gruszczynski, M., & Bogusz, J. (2016). Investigation of time-changeable seasonal components in the GPS height time series: a case study for Central Europe. Acta Geodynamica et Geomaterialia, 13(3), 281–289. doi: 10.13168/AGG.2016.0010.CrossRefGoogle Scholar
  30. Jiang, W., Li, Z., van Dam, T., & Ding, W. (2013). Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. Journal of Geodesy, 87, 687–703. doi: 10.1007/s00190-013-0642-3.CrossRefGoogle Scholar
  31. Kalenda, P., & Neumann, L. (2014). The Tilt of the Elevator Shaft of Bunker Skutina. Transactions of the VSB: Technical University of Ostrava., 60(1), 55–61. doi: 10.22223/tr.2014-1/1978.Google Scholar
  32. Kenyeres, A., & Bruyninx, C. (2009). Noise and Periodic Terms in the EPN Time Series. In H. Drewes (Ed.), Geodetic reference frame: International Association of Geodesy Symposia 134 (pp. 143–148). Springer Berlin Heidelberg, doi: 10.1007/978-3-642-00860-3_22.
  33. Klos, A., Bogusz, J., Figurski, M., & Gruszczynski, M. (2016). Error analysis for European IGS stations. Studia Geophysica et Geodaetica, 60, 17–34. doi: 10.1007/s11200-015-0828-7.CrossRefGoogle Scholar
  34. Klos, A., Hunegnaw, A., Teferle, F. N., Abraha, K. E., Ahmed, F., & Bogusz, J. (2017). Noise characteristics in zenith total delay from homogeneously reprocessed GPS time series. Atmospheric Measurement Techniques Discussion. doi: 10.5194/amt-2016-385. (in review).Google Scholar
  35. Kontny, B., & Bogusz, J. (2012). Models of vertical movements of the Earth crust surface in the area of Poland derived from leveling and GNSS data. Acta Geodynamica et Geomaterialia, 9(3), 331–337.Google Scholar
  36. Krásná, H., Malkin, Z., & Böhm, J. (2015). Non-linear VLBI station motions and their impact on the celestial reference frame and Earth orientation parameters. Journal of Geodesy, 89, 1019–1033. doi: 10.1007/s00190-015-0830-4.CrossRefGoogle Scholar
  37. Kumar, A., Walia, V., Arore, B. R., Yanh, T. F., Lin, S.-J., Fu, Ch-Ch., et al. (2015). Identifications and removal of diurnal and semidiurnal variations in radon time series data of Hsinhua monitoring station in SW Taiwan using singular spectrum analysis. Natural Hazards, 79(1), 317–330. doi: 10.1007/s11069-015-1844-1.CrossRefGoogle Scholar
  38. Lee, T. K. M., Lim, J. G., Sanei, S., & Gan, S. S. W. (2015). Advances on singular spectrum analysis of rehabilitative assessment data. Journal of Medical Imaging and Health Informatics, 5(2), 350–358. doi: 10.1166/jmihi.2015.1399.CrossRefGoogle Scholar
  39. Mao, A., Harrison, C. H. G. A., & Dixon, T. H. (1999). Noise in GPS coordinate time series. Journal of Geophysical Research, 104(B2), 2797–2816. doi: 10.1029/1998JB900033.CrossRefGoogle Scholar
  40. Menemenlis, D., Campin, J., Heimbach, P., Hill, C., Lee, T., Nguyen, A., et al. (2008). ECCO2: High resolution global ocean and sea ice data synthesis. Mercator Ocean Quarterly Newsletter, 31, 13–21.Google Scholar
  41. Neumann, L. (2007). Static pendulum with contactless 2D sensor measurements opens the question of gravity dynamic and gravity noise on earth’s surface. Physics Essays, 20(4), 535. doi: 10.4006/1.3254506.Google Scholar
  42. Penna, N. T., King, M. A., & Stewart, M. P. (2007). GPS height time series: Short-period origins of spurious long-period signals. Journal of Geophysical Research, 112(B2), B02402. doi: 10.1029/2005JB004047.CrossRefGoogle Scholar
  43. Penna, N. T., & Stewart, M. P. (2003). Aliased tidal signatures in continuous GPS height time series. Geophysical Research Letters, 30(23), 2184. doi: 10.1029/2003GL018828.CrossRefGoogle Scholar
  44. Petrov, L., & Boy, J.-P. (2004). Study of the atmospheric pressure loading signal in VLBI observations. Journal of Geophysical Research, 109, B03405. doi: 10.1029/2003JB002500.CrossRefGoogle Scholar
  45. Ray, J., Altamimi, Z., Collilieux, X., & van Dam, T. (2008). Anomalous harmonics in the spectra of GPS position estimates. GPS Solutions, 12(1), 55–64. doi: 10.1007/s10291-007-0067-7.CrossRefGoogle Scholar
  46. Rebischung, P., Altamimi, Z., Ray, J., & Garayt, B. (2016). The IGS contribution to ITRF2014. Journal of Geodesy, 90(7), 611–630. doi: 10.1007/s00190-016-0897-6.CrossRefGoogle Scholar
  47. Reichle, R. H., Koster, R. D., De Lannoy, G. J. M., Forman, B. A., Liu, Q., Mahanama, S. P. P., et al. (2011). Assessment and enhancement of MERRA land surface hydrology estimates. Journal of Climate, 24, 6322–6338. doi: 10.1175/JCLI-D-10-05033.1.CrossRefGoogle Scholar
  48. Rodionov, S., & Overland, J. E. (2005). Application of a sequential regime shift detection method to the Bering Sea ecosystem. ICES Journal of Marine Science, 62, 328–332. doi: 10.1016/j.icesjms.2005.01.013.CrossRefGoogle Scholar
  49. Santamaria-Gomez, A., & Memin, A. (2015). Geodetic secular velocity errors due to interannual surface loading deformation. Geophysical Journal International, 202, 763–767. doi: 10.1093/gji/ggv190.CrossRefGoogle Scholar
  50. Schoellhamer, D. H. (2001). Singular spectrum analysis for time series with missing data. Geophysical Research Letters, 28, 3187–3190. doi: 10.1029/2000GL012698.CrossRefGoogle Scholar
  51. Shen, Y., Peng, F., & Li, B. (2015). Improved singular spectrum analysis for time series with missing data. Nonlinear Processes in Geophysics, 22, 371–376. doi: 10.5194/npg-22-371-2015.CrossRefGoogle Scholar
  52. Teferle, F. N., Bingley, R. M., Dodson, A. H., Penna, N. T., & Baker, T. F. (2002). Using GPS to separate crustal movements and sea level changes at tide gauges in the UK. In H. Drewes, A. H. Dodson, L. P. S. Fortes, L. Sanchez, & P. Sandoval (Eds.), Vertical reference systems (pp. 264–269). Heidelberg: Springer.CrossRefGoogle Scholar
  53. Tregoning, P., & van Dam, T. (2005). Effects of atmospheric pressure loading and seven-parameter transformations on estimates of geocenter motion and station heights from space geodetic observations. Journal of Geophysical Research, 110, B03408. doi: 10.1029/2004JB003334.CrossRefGoogle Scholar
  54. Tregoning, P., & Watson, C. (2009). Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research, 114, B09403. doi: 10.1029/2009JB006344.Google Scholar
  55. van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., & Ray, J. (2012). Nontidal ocean loading: amplitudes and potential effects in GPS height time series. Journal of Geodesy, 86, 1043–1057. doi: 10.1007/s00190-012-0564-5.CrossRefGoogle Scholar
  56. van Dam, T., & Wahr, J. M. (1987). Displacements of the Earth’s surface due to atmospheric loading: effects on gravity and baseline measurements. Journal of Geophysical Research: Solid Earth, 92(B2), 1281–1286. doi: 10.1029/JB092iB02p01281.CrossRefGoogle Scholar
  57. van Dam, T., Wahr, J., Chao, Y., & Leuliette, E. (1997). Predictions of crustal deformations and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophysical Journal International, 129, 507–517. doi: 10.1111/j.1365-246X.1997.tb04490.x.CrossRefGoogle Scholar
  58. van Dam, T., Wahr, J., & Lavallee, D. (2007). A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe. Journal of Geophysical Research, 112, B03404. doi: 10.1029/2006JB004335.Google Scholar
  59. van Dam, T., Wahr, J., Milly, P. C. D., Shmakin, A. B., Blewitt, G., Lavallée, D., et al. (2001). Crustal displacements due to continental water loading. Geophysical Research Letters, 28(4), 651–654. doi: 10.1029/2000GL012120.CrossRefGoogle Scholar
  60. Vautard, R., & Ghil, M. (1989). Singular Spectrum Analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35, 395–424. doi: 10.1016/0167-2789(89)90077-8.CrossRefGoogle Scholar
  61. Vautard, R., Yiou, P., & Ghil, M. (1992). Singular spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58, 95–126. doi: 10.1016/0167-2789(92)90103-T.CrossRefGoogle Scholar
  62. Welch, P. D. (1967). The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Transactions on Audio Electroacoustics, 15, 70–73. doi: 10.1109/TAU.1967.1161901.CrossRefGoogle Scholar
  63. Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., & Wobbe, F. (2013). generic mapping tools: improved version released. Eos, Transactions, American Geophysical Union, 94(45), 409–410. doi: 10.1002/2013EO450001.CrossRefGoogle Scholar
  64. Williams, S. D. P., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R. M., Prawirodirdjo, L., et al. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research, 109, B03412. doi: 10.1029/2003JB002741.Google Scholar
  65. Williams, S. D. P., & Penna, N. T. (2011). Non-tidal ocean loading effects on geodetic GPS heights. Geophysical Research Letters, 38, L09314. doi: 10.1029/2011GL046940.CrossRefGoogle Scholar
  66. Wu, C. L., & Chau, K. W. (2011). Rainfall–runoff modelling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399(3–4), 394–409. doi: 10.1016/j.jhydrol.2011.01.017.CrossRefGoogle Scholar
  67. Xu, C., & Yue, D. (2015). Monte Carlo SSA to detect time variable seasonal oscillations from GPS-derived site position time series. Tectonophysics, 665, 118–126. doi: 10.1016/j.tecto.2015.09.029.CrossRefGoogle Scholar
  68. Yan, H., Chen, W., Zhu, Y., Zhang, W., & Zhong, M. (2009). Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophysical Research Letters, 36, L13301. doi: 10.1029/2009GL038152.CrossRefGoogle Scholar
  69. Zerbini, S., Matonti, F., Raicich, F., Richter, B., & van Dam, T. (2004). Observing and assessing nontidal ocean loading using ocean, continuous GPS and gravity data in the Adriatic area. Geophysical Research Letters, 31, L23609. doi: 10.1029/2004GL021185.CrossRefGoogle Scholar
  70. Zerbini, S., Raicich, F., Errico, M., & Cappello, G. (2013). An EOF and SVD analysis of interannual variability of GPS coordinates, environmental parameters and space gravity data. Journal of Geodynamics, 67, 111–124. doi: 10.1016/j.jog.2012.04.006.CrossRefGoogle Scholar
  71. Zhang, J., Hassani, H., Xie, H., & Zhang, X. (2014). Estimating multi-country prosperity index: A two-dimensional singular spectrum analysis approach. Journal of Systems Science and Complexity, 27(1), 56–74. doi: 10.1007/s11424-014-3314-3.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2017

Authors and Affiliations

  • Anna Klos
    • 1
  • Marta Gruszczynska
    • 1
    Email author
  • Machiel Simon Bos
    • 2
  • Jean-Paul Boy
    • 3
  • Janusz Bogusz
    • 1
  1. 1.Faculty of Civil Engineering and GeodesyMilitary University of TechnologyWarsawPoland
  2. 2.Instituto D. LuisUniversity of Beira InteriorCovilhãPortugal
  3. 3.Institut de Physique du Globe de StrasbourgCNRS/Université de Strasbourg (EOST)StrasbourgFrance

Personalised recommendations