Skip to main content
Log in

Finding the repeat times of the GPS constellation

  • GPS Tool Box
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Single-epoch estimates of position using GPS are improved by removing multipath signals, which repeat when the GPS constellation does. We present two programs for finding this repeat time, one using the orbital period and the other the topocentric positions of the satellites. Both methods show that the repeat time is variable across the constellation, at the few-second level for most satellites, but with a few showing much different values. The repeat time for topocentric positions, which we term the aspect repeat time, averages 247 s less than a day, with fluctuations through the day that may be as much as 2.5 s at high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Airy GB (1834) Gravitation: an elementary explanation of the principal perturbations in the solar system. C. Knight, London

  • Beutler G, Weber R, Hugentobler U, Rothacher M, Verdun A (1998) GPS satellite orbits. In: Teunissen PJG, Kleusberg A (eds) GPS for geodesy, 2nd edn. Springer, Berlin Heidelberg New York, pp. 43–109

  • Bock Y, Nikolaidis RM, de Jonge PJ, Bevis M (2000) Instantaneous geodetic positioning at medium distances with the Global Positioning System. J Geophys Res 105:28223–28253

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo L, Melbourne TI (2004) Detection of arbitrarily large dynamic ground motions with a dense high-rate GPS network. Geophys Res Lett 31(6):L06604. DOI 10.1029/2003GL019150

    Google Scholar 

  • Choi K, Bilich A, Larson KM, Axelrad P (2004) Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett 31(22):L22608. DOI 10.1029/2004GL021621

    Google Scholar 

  • Elósegui P, Davis JL, Jaldehag RTK, Johansson JM, Niell AE, Shapiro II (1995) Geodesy using the Global Positioning System: the effects of signal scattering on estimates of site position. J Geophys Res 100:9921–9934

    Article  Google Scholar 

  • Ge L, Han S, Rizos C (2002) GPS multipath change detection in permanent GPS stations. Surv Rev 36:306–322

    Google Scholar 

  • Genrich JF, Bock Y (1992) Rapid resolution of crustal motion at short ranges with the Global Positioning System. J Geophys Res 97:3261–3269

    Article  Google Scholar 

  • Genrich JF, Bock Y (2006) Instantaneous geodetic positioning with 10–50 Hz GPS measurements: noise characteristics and implications for monitoring networks. J Geophys Res 111(B3):B03403. DOI 10.1029/2005JB003617

    Google Scholar 

  • Hofmann-Wellenhof B, Lichtenegger H, Collins J (1994) Global Positioning System: theory and practice. Springer, Berlin Heidelberg New York

  • Langbein J, Bock Y (2004) High-rate real-time GPS network at Parkfield: utility for detecting fault slip and seismic displacements. Geophys Res Lett 31(15):L15S20. DOI 10.1029/2003GL019408

    Google Scholar 

  • Larson KM, Bodin P, Gomberg J (2003) Using 1-Hz GPS data to measure deformations caused by the Denali fault earthquake. Science 300:1421–1424

    Article  Google Scholar 

  • Nikolaidis RM (2002) Observation of global and seismic deformation with the Global Positioning System. Ph.D. thesis, University of California, San Diego

  • Nikolaidis R, Bock Y, de Jonge PJ, Shearer P, Agnew DC, Domselaar MV (2001) Seismic wave observations with the Global Positioning System. J Geophys Res 106:21897–21916

    Article  Google Scholar 

  • Park K-D, Elósegui P, Davis JL, Jarlemark POJ, Corey BE, Niell AE, Normandeau JE, Meertens CE, Andreatta VA (2004a), Development of an antenna and multipath calibration system for Global Positioning System sites. Radio Sci 39(5):RS5002. DOI 10.1029/2003RS002999

  • Park KD, Nerem RS, Schenewerk MS, Davis JL (2004b) Site-specific multipath characteristics of global IGS and CORS GPS sites. J Geod 77:799–803

    Article  Google Scholar 

  • Remondi BW (1989) Extending the National Geodetic Survey standard GPS orbit formats. NOAA Technical Report NOS 133 NGS 46. U.S. National Oceanic and Atmospheric Administration, Rockville

  • Schenewerk M (2003) A brief review of basic GPS orbit interpolation strategies. GPS Solut 6:265–267. DOI 10.1007/s10291-002-0036-0

    Google Scholar 

  • Seeber G, Menge F, Völksen C, Wübbena G, Schmitz M (1998) Precise GPS positioning improvements by reducing antenna and site dependent effects. In: Brunner FK (ed) Advances in positioning and reference frames: IAG symposium, vol. 118. Springer, Berlin Heidelberg New York, pp. 237–244,

  • Wdowinski S, Bock Y, Zhang J, Fang P, et al (1997) Southern California permanent GPS geodetic array: spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res 102:18057–18070

    Article  Google Scholar 

  • Wübbena G, Schmitz M, Menge F, Seeber G, Völksen C (1997) A new approach for field calibration of absolute antenna phase center variations. Navigation 44:247–256

    Google Scholar 

Download references

Acknowledgments

We thank Penina Axelrad and George Rosborough for valuable discussions. This research was in part supported by the Southern California Earthquake Center, which is funded by NSF EAR-0106924 and USGS 02HQAG0008, and in part by NSF EAR-0337206. This is SCEC contribution 1012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan Carr Agnew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agnew, D.C., Larson, K.M. Finding the repeat times of the GPS constellation. GPS Solut 11, 71–76 (2007). https://doi.org/10.1007/s10291-006-0038-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-006-0038-4

Keywords

Navigation