Skip to main content
Log in

Biodegradation and detoxification of phenanthrene in in vitro and in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety

  • Current Trends and Research in Industrial Wastewater Treatment through Bioreactor Approach
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are recalcitrant organic pollutants generated from agricultural, industrial, and municipal sources, and their strong carcinogenic and teratogenic properties pose a harmful threat to human beings. The present study deals with the bioremediation of phenanthrene by a ligninolytic fungus, Coriolopsis byrsina (Mont.) Ryvarden strain APC5 (GenBank; KY418163.1), isolated from the fruiting body of decayed wood surface. During the experiment, Coriolopsis byrsina strain APC5 was found as a promising organism for the degradation and detoxification of phenanthrene (PHE) in in vitro and in vivo conditions. Further, HPLC analysis showed that the C. byrsina strain degraded 99.90% of 20 mg/L PHE in in vitro condition, whereas 77.48% degradation of 50 mg/L PHE was reported in in vivo condition. The maximum degradation of PHE was noted 25 °C temperature under shaking flask conditions at pH 6.0. Further, GC-MS analysis of fungal treated samples showed detection of 9,10-Dihydroxy phenanthrene, 2,2-Diphenic acid, phthalic acid, 4-heptyloxy phenol, benzene octyl, and acetic acid anhydride as the metabolic products of degraded PHE. Furthermore, the phytotoxicity evaluation of degraded PHE was observed through the seed germination method using Vigna radiata and Cicer arietinum seeds. The phytotoxicity results showed that the seed germination index and vegetative growth parameters of tested plants were increased in the degraded PHE soil. As results, C. byrsina strain APC5 was found to be a potential and promising organism to degrade and detoxify PHE without showing any adverse effect of their metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The gene sequence data of Coriolopsis byrsina strain APC5 were deposited in the NCBI GenBank database and assigned the accession number KY418163.1, https://www.ncbi.nlm.nih.gov/nuccore/KY418163

References

  • Abdel-Shafy HI, Mansour MSM (2015) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123

    Article  Google Scholar 

  • Agrawal N, Shahi SK (2017) Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int Biodeterior Biodegradation 122:69–81

    Article  CAS  Google Scholar 

  • Agrawal N, Verma P, Shahi SK (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5(1):11

    Article  Google Scholar 

  • Ainerua MO, Tinwell J, Murphy R, Galli GL, van Dongen BE, White KN, Shiels HA (2021) Prolonged phenanthrene exposure reduces cardiac function but fails to mount a significant oxidative stress response in the signal crayfish (Pacifastacus leniusculus). Chemosphere 268:129297

    Article  CAS  Google Scholar 

  • Alkio M, Tabuchi TM, Wang X, Colon-Carmona A (2005) Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. J Exp Bot 56(421):2983–2994

    Article  CAS  Google Scholar 

  • Antosova B, Hrabak P, Antos V, Waclawek S (2020) Chemical oxidation of polycyclic aromatic hydrocarbins in water by ferrates (VI). Ecol Chem Eng S Inz Ekol S 27:529–542

    CAS  Google Scholar 

  • Archibald FS (1992) A new assay for lignin type peroxidase employing the dye Azure B. Appl Environ Microbiol 58:3110–3116

    Article  CAS  Google Scholar 

  • Arora DS, Gill PK (2001) Comparison of two assay procedures for lignin peroxidase. Enzym Microb Technol 28:602–605

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  Google Scholar 

  • Balaji V, Ebenezer P (2008) Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation. Indian J Sci Technol 1:1–8

    Article  Google Scholar 

  • Bandowe BAM, Leimer S, Meusel H, Velescu A, Dassen S, Eisenhauer N, Hoffmann T, Oelmann Y, Wilcke W (2019) Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grass land soils. Soil Biol Biochem 129:60–70

    Article  CAS  Google Scholar 

  • Bankole PO, Semple KT, Jeon BH, Govindwar SP (2021) Biodegradation of fluorene by the newly isolated marine-derived fungus, Mucor irregularis strain bpo1 using response surface methodology. Ecotoxicol Environ Saf 208:111619

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2547–2553

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63(7):2495–2501

    Article  CAS  Google Scholar 

  • Biko OD, Viljoen-Bloom M, Van Zyl WH (2020) Microbial lignin peroxidases: applications, production challenges and future perspectives. Enzym Microb Technol 141:109669

    Article  CAS  Google Scholar 

  • Bishnoi K, Kumar R, Bishnoi NR (2008) Biodegradation of polycyclic aromatic hydrocarbons by white rot fungi Phanerochaete chrysosporium in sterile and unsterile soil. J Sci Ind Res 67:538–542

  • Bohmer S, Messner K, Srebotnik E (1998) Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenztriazole and unsaturated lipids. Biochem Biophys Res Commun 244:233–238

    Article  CAS  Google Scholar 

  • Budavari S, O ' Neil MJ, Smith A (1989) The Merck Index. Merck & Co, Inc, Rahway, NJ, pp 143–1144

    Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55:154–158

    Article  CAS  Google Scholar 

  • Cajthaml T, Erbanova P, Kollmann A, Novotny C, Sasek V, Mougin C (2008) Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol 53:289–294

    Article  CAS  Google Scholar 

  • Chen K, Zhu Q, Qian Y, Song Y, Yao J, Choi MM (2013) Microcalorimetric investigation of the effect of non-ionic surfactant on biodegradation of pyrene by PAH-degrading bacteria Burkholderia cepacia. Ecotoxicol Environ Saf 98:361–367

    Article  CAS  Google Scholar 

  • Czaplicki LM, Dharia M, Cooper EM, Ferguson PL, Gunsch CK (2018) Evaluating the mycostimulation potential of select carbon amendments for the degradation of a model PAH by an ascomycete strain enriched from a superfund site. Biodegradation 29(5):463–471

    Article  CAS  Google Scholar 

  • de Jong E, Field JA, de Bont JA (1992) Evidence for a new extracellular peroxidase manganese inhibited peroxidase from the white rot fungus Bjerkandera sp. BOS 55. FEBS Lett 299:107–110

    Article  Google Scholar 

  • Dhawale SW, Dhawale SS, Dean-Ross D (1992) Degradation of Phenanthrene by Phanerochaete Chrysosporium occurs under ligninolytic as well as non ligninolytic conditions. Appl Environ Microbiol 58:3000–3006

    Article  CAS  Google Scholar 

  • Dixon RK, Rao MV, Garg VK (1993) Salt stress affects in vitro growth and in situ symbioses of ectomycorrhizal fungi. Mycorrhiza 3:63–68

    Article  Google Scholar 

  • D ' Souza TM, Merrit CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    Article  CAS  Google Scholar 

  • Emami E, Zolfaghari P, Golizadeh M, Karimi A, Lau A, Ghiasi B, Ansari Z (2020) Effects of stabilizers on sustainability, activity and decolorization performance of Manganese Peroxidase enzyme produced by Phanerochaete chrysosporium. J Environ Chem Eng 8(6):104459

    Article  CAS  Google Scholar 

  • Falciglia PP, Lumia L, Giustra MG, Gagliano E, Roccaro P, Vagliasindi FG, Di Bella G (2020) Remediation of petrol hydrocarbon-contaminated marine sediments by thermal desorption. Chemosphere 260:127576

    Article  CAS  Google Scholar 

  • Field JA, de Jong E, Costa GF, de Bont JAM (1992) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58:2219–2226

    Article  CAS  Google Scholar 

  • Garcia-Uitz K, Moreno-Andrade I, Hernandez-Nunez E, Corona-Cruz A, Giacoman-Vallejos G, Ponce-Caballero C (2016) Degradation of phenanthrene by natural consortia in seawater. Rom Biotechnol Lett 21:11195–11200

    Google Scholar 

  • Ghosal D, Chakraborty J, Khara P, Dutta TK (2010) Degradation of phenanthrene via meta-cleavage of 2-hydroxy-1-naphthoic acid by Ochrobactrum sp. strain PWTJD. FEMS Microbiol Lett 313:103–110

    Article  CAS  Google Scholar 

  • Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369

    Google Scholar 

  • Gitipour S, Sorial GA, Ghasemi S, Bazyari M (2018) Treatment technologies for PAH-contaminated sites: a critical review. Environ Monit Assess 190:1–17

    Article  CAS  Google Scholar 

  • Gomes E, Aguiar AP, Carvalho CC, Bonfa MRB, Silva RD, Boscolo M (2009) Ligninases production by Basidiomycetes strains on lignocellulosic agricultural residues and their application in the decolorization of synthetic dyes. Braz J Microbiol 40:31–39

    Article  CAS  Google Scholar 

  • Hadibarata T, Kristanti RA (2012) Fate and cometabolic degradation of benzo[a]pyrene by white rot fungus Armillaria sp. F022. Bioresour Technol 107:314–318

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S (2010) Characterization of phenanthrene degradation by strain Polyporus sp. S133. J Environ Sci 22:142–149

    Article  CAS  Google Scholar 

  • Hadibarata T, Yuniarto A (2020) Biodegradation of polycyclic aromatic hydrocarbons by high-laccase basidiomycetes fungi isolated from tropical forest of Borneo. Biocatal Agric Biotechnol 28:101717

  • Hamman OB, de La Rubia T, Martinez J (1997) Effect of carbon and nitrogen limitation on lignin peroxidase and manganese peroxidase production by Phanerochaete flavido-alba. J Appl Microbiol 83(6):751–757

    Article  Google Scholar 

  • Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103(5):41

    CAS  Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1838

    Article  CAS  Google Scholar 

  • Han MJ, Choi HT, Song HG (2004) Degradation of phenanthrene by Trametes versicolor and its laccase. J Microbiol 42:94–98

    CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hidayat A, Yanto DHY (2018) Biodegradation and metabolic pathway of phenanthrene by a new tropical fungus, Trametes hirsuta D7. J Environ Chem Eng 6(2):2454–2460

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1983) IARC monographs on the evaluation of carcinogenic risks to humans, polynuclear aromatic compounds, part 1. In: Chemical, Environmental and Experimental Data, vol 32. World Health Organization, Lyon, pp 419–430

    Google Scholar 

  • Idowu O, Semple KT, Ramadass K, O ' Connor W, Hansbro P, Thavamani P (2019) Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ Int 123:543–557

    Article  CAS  Google Scholar 

  • Ike PTL, Birolli WG, Dos Santos DM, Porto ALM, Souza DHF (2019) Biodegradation of anthracene and different PAHs by a yellow laccase from Leucoagaricus gongylophorus. Environ Sci Pollut Res 26(9):8675–8684

    Article  CAS  Google Scholar 

  • Jia Y, Chen Y, Luo J, Hu Y (2019) Immobilization of laccase onto meso-MIL-53 (Al) via physical adsorption for the catalytic conversion of triclosan. Ecotoxicol Environ Saf 184:109670

    Article  CAS  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  CAS  Google Scholar 

  • Kalugina OV, Mikhailova TA, Shergina OV (2018) Contamination of Scots pine forests with polycyclic aromatic hydrocarbons on the territory of industrial city of Siberia, Russia. Environ Sci Pollut Res 25(21):21176–21184

    Article  CAS  Google Scholar 

  • Kamei I, Daikoku C, Tsutsumi Y, Kondo R (2008) Saline-dependent regulation of manganese peroxidase genes in the hypersaline tolerant white rot fungus Phlebia sp. strain MG-60. Appl Environ Microbiol 74:2709–2716

    Article  CAS  Google Scholar 

  • Kim MS, Huh EJ, Kim HK, Moon KW (1998) Degradation of polycyclic aromatic hydrocarbons by selected white-rot fungi and the influence of lignin peroxidase. J Microbiol Biotechnol 8:129–133

    CAS  Google Scholar 

  • Kunjadia PD, Sanghvi GV, Kunjadia AP, Mukhopadhyay PN, Dave GS (2016) Role of ligninolytic enzymes of white rot fungi (Pleurotus spp.) grown with azo dyes. SpringerPlus 5:1487

    Article  CAS  Google Scholar 

  • Li H, Qu R, Li C, Guo W, Han X, He F, Ma Y, Xing B (2014) Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresour Technol 163:193–198

    Article  CAS  Google Scholar 

  • Li S, Luo J, Hang X, Zhao S, Wan Y (2019) Removal of polycyclic aromatic hydrocarbons by nanofiltration membranes: rejection and fouling mechanisms. J Membr Sci 582:264–273

    Article  CAS  Google Scholar 

  • Li F, Zhang Y, Wang S, Li G, Yue X, Zhong D, Chena C, Shen K (2020) Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach. Chem Eng J 385:123946

    Article  CAS  Google Scholar 

  • Liu S, Guo C, Lin W, Wu F, Lu G, Lu J, Dang Z (2017) Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B. Sci Total Environ 609:1161–1171

    Article  CAS  Google Scholar 

  • Llorens-Blanch G, Parlade E, Martinez-Alonso M, Gaju N, Caminal G, Blanquez P (2018) A comparison between biostimulation and bioaugmentation in a solid treatment of anaerobic sludge: drug content and microbial evaluation. Waste Manag 72:206–217

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with folin-phenol reagent. J Biol Chem 193:265–275

    Article  CAS  Google Scholar 

  • Luo K, Carmella SG, Zhao Y, Tang MK, Hecht SS (2020) Identification and quantification of phenanthrene ortho-quinones in human urine and their association with lipid peroxidation. Environ Pollut 266:115342

    Article  CAS  Google Scholar 

  • Madhavi V, Lele SS (2009) Laccase: properties and applications. Bioresources 4(4):1694–1717

    Google Scholar 

  • Mahto KU, Das S (2020) Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1. Ecotoxicol Environ Saf 206:111087

    Article  CAS  Google Scholar 

  • Mao J, Guan W (2016) Fungal degradation of polycyclic aromatic hydrocarbons (PAHs) by Scopulariopsis brevicaulis and its application in bioremediation of PAH-contaminated soil. Acta Agric Scand Sect B Soil Plant Sci 66(5):399–405

    CAS  Google Scholar 

  • McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM (1997) Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem 16(5):892–899

    Article  CAS  Google Scholar 

  • Moon SJ, Kim HW, Jeon SJ (2018) Biochemical characterization of a thermostable cobalt-or copper-dependent polyphenol oxidase with dye decolorizing ability from Geobacillus sp. JS12. Enzym Microb Technol 118:30–36

    Article  CAS  Google Scholar 

  • Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY (2018) Removal of pharmaceutical compounds in water and wastewater using fungal oxidoreductase enzymes. Environ Pollut 234:190–213

    Article  CAS  Google Scholar 

  • Nguyen VH, Thi LAP, Van Le Q, Singh P, Raizada P, Kajitvichyanukul P (2020) Tailored photocatalysts and revealed reaction pathways for photodegradation of polycyclic aromatic hydrocarbons (PAHs) in water, soil and other sources. Chemosphere 260:127529

    Article  CAS  Google Scholar 

  • Nowak M, Zawadzka K, Lisowska K (2020) Occurrence of methylisothiazolinone in water and soil samples in Poland and its biodegradation by Phanerochaete chrysosporium. Chemosphere 254:126723

    Article  CAS  Google Scholar 

  • Park H, Min B, Jang Y, Kim J, Lipzen A, Sharma A, Andreopoulos B, Johnson J, Riley R, Spatafora JW, Henrissat B, Kim KH, Grigoriev IV, Kim JJ, Choi IG (2019) Comprehensive genomic and transcriptomic analysis of polycyclic aromatic hydrocarbon degradation by a mycoremediation fungus, Dentipellis sp. KUC8613. Appl Microbiol Biotechnol 103(19):8145–8155

    Article  CAS  Google Scholar 

  • Pourfadakari S, Jorfi S, Roudbari A, Javid A, Talebi SS, Ghadiri SK, Yousefi N (2021) Optimization of electro-kinetic process for remediation of soil contaminated with phenanthrene using response surface methodology. Environ Sci Pollut Res 28(1):1006–1017

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Nikiforova SV, Makarov OE, Chernyshova MP, Pankin KE, Turkovskaya OV (2010) Influence of cultivation conditions on pyrene degradation by the fungus Pleurotus ostreatus D1. World J Microbiol Biotechnol 26:205–211

    Article  CAS  Google Scholar 

  • Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, Balandina S, Turkovskaya O (2018) The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biol 122:363–372. https://doi.org/10.1016/j.funbio.2018.02.007

    Article  CAS  Google Scholar 

  • Qian L, Chen B (2012) Enhanced oxidation of benzo[a]pyrene by crude enzyme extracts produced during interspecific fungal interaction of Trametes versicolor and Phanerochaete chrysosporium. J Environ Sci 24:1639–1646

    Article  CAS  Google Scholar 

  • Romantschuk M, Sarand I, Petainen T, Peltola R, Jonsson Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210:227–232

    Article  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadrazil F, Fritsche W (1997) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63(10):3919–3925

    Article  CAS  Google Scholar 

  • Sandhu DK, Arora DS (1985) Laccase production by Polyporus sanguineus under different nutritional and environmental conditions. Experientia 41:355–356

    Article  CAS  Google Scholar 

  • Shafiei M, Afzali F, Karkhane AA, Ebrahimi SM, Haghbeen K, Aminzadeh S (2019) Cohnella sp. A01 laccase: thermostable, detergent resistant, anti-environmental and industrial pollutants enzyme. Heliyon 5(9):e02543

    Article  Google Scholar 

  • Singh H (2006) Mycoremediation: fungal bioremediation. John Wiley and Sons, Hoboken

  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57:3310–3316

    Article  CAS  Google Scholar 

  • Teng Y, Luo Y, Sun M, Liu Z, Li Z, Christie P (2010) Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol 101(10):3437–3443

    Article  CAS  Google Scholar 

  • Ting WTE, Yuan SY, Wu SD, Chang BV (2011) Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. Int Biodeterior Biodegrad 65(1):238–242

    Article  CAS  Google Scholar 

  • Torres-Farrada G, Manzano-Leon AM, Rineau F, Leal MR, Thijs S, Jambon I, Put J, Czech J, Rivera GG, Carleer R, Vangronsveld J (2019) Biodegradation of polycyclic aromatic hydrocarbons by native Ganoderma sp. strains: identification of metabolites and proposed degradation pathways. Appl Microbiol Biotechnol 103(17):7203–7215

    Article  CAS  Google Scholar 

  • USEPA (US Environmental Protection Agency) (1988) Drinking water criteria document for polycyclic aromatic hydrocarbons (PAHs), Prepared by the Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment, US Environmental Protection Agency, Cincinnati, OH, for the office of drinking water. ECAOCIND010.

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157(2):174–209

    Article  CAS  Google Scholar 

  • Wu ML, Nie MQ, Wang XC, Su JM, Cao W (2010) Analysis of phenanthrene biodegradation by using FTIR, UV and GC–MS. Spectrochim Acta A 75:1047–1050

    Article  CAS  Google Scholar 

  • Wu M, Xu Y, Ding W, Li Y, Xu H (2016) Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by tween 80 and saponin. Appl Microbiol Biotechnol 100:7249–7261

    Article  CAS  Google Scholar 

  • Wulandari R, Lotrakul P, Punnapayak H, Amirta R, Kim SW, Prasongsuk S (2021) Toxicity evaluation and biodegradation of phenanthrene by laccase from Trametes polyzona PBURU 12. 3. Biotech 11(1):1–11

    Google Scholar 

  • Xu SY, Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363(1-3):206–215

    Article  CAS  Google Scholar 

  • Xu Q, Huang Z, Ji S, Zhou J, Shi R, Shi W (2020) Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J Radioanal Nucl Chem 323(1):253–261

    Article  CAS  Google Scholar 

  • Xu Z, Wang C, Li H, Xu S, Du J, Chen Y, Ma C, Tang J (2021) Concentration, distribution, source apportionment, and risk assessment of surrounding soil PAHs in industrial and rural areas: A comparative study. Ecol Indic 125:107513

    Article  CAS  Google Scholar 

  • Yamanaka R, Soares CF, Matheus DR, Machado KMG (2008) Lignolytic enzymes produced by Trametes villosa CCB176 under different culture conditions. Braz J Microbiol 39:78–84

    Article  Google Scholar 

  • Zebulum HO, Isikhuemhen OS, Inyang H (2011) Decontamination of anthracene-polluted soil through white rot fungus induced biodegradation. Environmentalist 31:11–19

    Article  Google Scholar 

  • Zhao HP, Wu QS, Wang L, Zhao XT, Gao HW (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. J Hazard Mater 164(2):863–869

    Article  CAS  Google Scholar 

  • Zhou H, Zhang S, Xie J, Wei H, Hu Z, Wang H (2020) Pyrene biodegradation and its potential pathway involving Roseobacter clade bacteria. Int Biodeterior Biodegrad 150:104961

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Anand Barapatre, Senior Technical Assistant at Department of Pharmacy, Indira Gandhi National Tribal University (IGNTU), Amarkantak, Madhya Pradesh, India, for their support in the statistical analysis of generated data. The authors are also grateful to Swaroop Biswas, Junior Lab Assistant, Smriti Ranjan Maji, Technical Officer at CIF-PD Lab Bose Institute, Kolkata, for HPLC and GC-MS analysis. The authors are thankful to the head of the Department of Botany, Guru Ghasidas Vishwavidyalaya, for providing infrastructural facilities. Also, thanks to Guru Ghasidas Vishwavidyalaya, Bilaspur (C.G.) for their financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Nikki Agrawal: performed the experiments and completed the manuscript writing. Vineet Kumar: manuscript writing, reviewing, and editing. Sushil Kumar Shahi: guided during research experiments and manuscript writing, reviewing, and editing. All the authors approved the final manuscript.

Corresponding author

Correspondence to Sushil Kumar Shahi.

Ethics declarations

Ethical approval

All the authors have read and agreed with the ethics of publishing the manuscript.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, N., Kumar, V. & Shahi, S.K. Biodegradation and detoxification of phenanthrene in in vitro and in vivo conditions by a newly isolated ligninolytic fungus Coriolopsis byrsina strain APC5 and characterization of their metabolites for environmental safety. Environ Sci Pollut Res 29, 61767–61782 (2022). https://doi.org/10.1007/s11356-021-15271-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15271-w

Keywords

Navigation