Skip to main content

Advertisement

Log in

Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bioremediation of areas co-contaminated with metals and polycyclic aromatic hydrocarbons (PAHs) by mushrooms has attracted considerable attention in recent years. In this study, Pleurotus eryngii was introduced for the removal of Mn and phenanthrene (Phe) from potato liquid medium (PDL) simultaneously. Effects of Tween 80 and saponin on P. eryngii growth together with Mn uptake as well as Phe removal were investigated. Although pollutants had a negative effect on mycelial morphology and growth, P. eryngii could still tolerate and remove Mn and Phe. Tween 80 increased removal of Mn and Phe through increase of P. eryngii growth, Phe solubility, pollutants bioavailability, and specific surface area of mycelium pellets, moreover, the activities of manganese peroxidase (MnP) and laccase, which played an important role on PAHs biodegradation. The maximal removal of Mn and Phe was achieved (92.17 and 93.85 % after 15 days incubation, respectively) with 0.6 g L−1 Tween 80. Treatments with saponin markedly inhibited P. eryngii growth (50.17–66.32 % lower relative to control) due to its fungistatic activity. Nevertheless, saponin could slightly enhance Phe removal through increasing solubility of Phe, and Phe removal rate varied from 80.53 to 87.06 % in saponin treatments. Joint stress of Mn and Phe induced a strong antioxidative response, and superoxide dismutase (SOD) activity decreased in surfactants-treated mycelium compared with control. Generally, Tween 80 was more suitable for strengthening mycoremediation by P. eryngii than saponin, and could be a promising alternative for the remediation of heavy metals and PAHs co-contaminated sites by mushrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo F, Pizzul L, Castillo MD, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185(1):212–219. doi:10.1016/j.jhazmat.2010.09.020

    Article  CAS  PubMed  Google Scholar 

  • Aksmann A, Tukaj Z (2004) The effect of anthracene and phenanthrene on the growth, photosynthesis, and SOD activity of the green alga Scenedesmus armatus depends on the PAR irradiance and CO2 level. Arch Environ Contam Toxicol 47(2):177–184. doi:10.1007/s00244-004-2297-9

    Article  CAS  PubMed  Google Scholar 

  • Altomare C, Norvell WA, Bjorkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65(7):2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Z, Harvey LM, McNeil B (2003) Oxidative stress in submerged cultures of fungi. Crit Rev Biotechnol 23(4):267–302

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Beaucham C, Fridovic I (1971) Superoxide Dismutase - Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276-& doi:10.1016/0003-2697(71)90370-8

  • Bi-Xian M, Jia-Mo F, Guo-Ying S, Yue-Hui K, Zheng L, Gan Z, Yu-Shuan M, Zeng EY (2002) Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China. Environ Pollut 117(3):457–474

    Article  Google Scholar 

  • Billingsley KA, Backus SM, Ward OP (1999) Effect of surfactant solubilization on biodegradation of polychlorinated bipbenyl congeners by Pseudomonas LB400. Appl Microbiol Biotechnol 52(2):255–260

    Article  CAS  PubMed  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, da Silva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzym Microb Technol 46(1):32–37. doi:10.1016/j.enzmictec.2009.07.014

    Article  CAS  Google Scholar 

  • Bowler C, Mv M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–116

    Article  CAS  Google Scholar 

  • Campos JA, Tejera NA, Sanchez CJ (2009) Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals 22(5):835–841. doi:10.1007/s10534-009-9230-7

    Article  CAS  PubMed  Google Scholar 

  • Cao M, Hu Y, Sun Q, Wang L, Chen J, Lu X (2013) Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution. Environ Pollut 174:93–99. doi:10.1016/j.envpol.2012.11.015

    Article  CAS  PubMed  Google Scholar 

  • Cao YR, Zhang XY, Deng JY, Zhao QQ, Xu H (2012) Lead and cadmium-induced oxidative stress impacting mycelial growth of Oudemansiella radicata in liquid medium alleviated by microbial siderophores. World J Microbiol Biotechnol 28(4):1727–1737. doi:10.1007/s11274-011-0983-0

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Xuan X, Zhu L, Wang J, Gao Y, Yang K, Shen X, Lou B (2004) Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res 38(16):3558–3568

    Article  CAS  PubMed  Google Scholar 

  • Collina E, Lasagni M, Pitea D, Franzetti A, Di Gennaro P, Bestetti G (2007) Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition. Anal Chim 97(9):799–805. doi:10.1002/adic.200790065

    Article  CAS  Google Scholar 

  • Diazveliz G (2004) Behavioral effects of manganese injected in the rat substantia nigra are potentiated by dicumarol, a DT-diaphorase inhibitor. Pharmacol Biochem Be 77(2):245–251. doi:10.1016/j.pbb.2003.10.016

    Article  CAS  Google Scholar 

  • Escalante AM, Santecchia CB, López SN, Gattuso MA, Ravelo AG, Delle Monache F, Sierra MG, Zacchino SA (2002) Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharmacol 82(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Feng T, Lin H, Tang J, Feng Y (2014) Characterization of polycyclic aromatic hydrocarbons degradation and arsenate reduction by a versatile Pseudomonas isolate. Int Biodeterior Biodegradation 90:79–87. doi:10.1016/j.ibiod.2014.01.015

    Article  CAS  Google Scholar 

  • Feng T, Cui C, Dong F, Yy F, Yd L, Yang X (2012) Phenanthrene biodegradation by halophilic Martelella sp AD-3. J Appl Microbiol 113(4):779–789. doi:10.1111/j.1365-2672.2012.05386.x

    Article  CAS  PubMed  Google Scholar 

  • Franzetti A, Di Gennaro P, Bevilacqua A, Papacchini M, Bestetti G (2006) Environmental features of two commercial surfactants widely used in soil remediation. Chemosphere 62(9):1474–1480. doi:10.1016/j.chemosphere.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11(3):271–279. doi:10.1016/s0958-1669(00)00095-1

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani M, Eisazadeh H (2012) Fixed bed column study for Zn, Cu, Fe and Mn removal from wastewater using nanometer size polypyrrole coated on rice husk ash. Synth Met 162(15–16):1429–1433. doi:10.1016/j.synthmet.2012.05.018

    Article  CAS  Google Scholar 

  • Goodyear KL, McNeill S (1999) Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ 229(1–2):1–19. doi:10.1016/s0048-9697(99)00051-0

    Article  CAS  Google Scholar 

  • Grimberg SJ, Stringfellow WT, Aitken MD (1996) Quantifying the biodegradation of phenanthrene by Pseudomonas stutzeri P16 in the presence of a nonionic surfactant. Appl Environ Microb 62(7):2387–2392

    CAS  Google Scholar 

  • Guelfi A, Azevedo RA, Lea PJ, Molina SMG (2003) Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: an antioxidant enzyme approach. J Gen Appl Microbiol 49(2):63–73. doi:10.2323/jgam.49.63

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Kristanti RA (2014) Potential of a white-rot fungus Pleurotus eryngii F032 for degradation and transformation of fluorene. Fungal Biol 118(2):222–227. doi:10.1016/j.funbio.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Teh ZC, Rubiyatno ZM, Khudhair AB, Yusoff ARM, Salim MR, Hidayat T (2013) Identification of naphthalene metabolism by white rot fungus Pleurotus eryngii. Bioprocess Biosyst Eng 36(10):1455–1461. doi:10.1007/s00449-013-0884-8

    Article  CAS  PubMed  Google Scholar 

  • Hadibarata T, Yusoff ARM, Aris A, Kristanti RA (2012) Identification of naphthalene metabolism by white rot fungus Armillaria sp F022. J Environ Sci 24(4):728–732. doi:10.1016/s1001-0742(11)60843-7

    Article  CAS  Google Scholar 

  • Hannam ML, Bamber SD, Galloway TS, Moody AJ, Jones MB (2004) Effects of the model PAH phenanthrene on immune function and oxidative stress in the haemolymph of the temperate scallop Pecten maximus. J Phys Chem B 108(26):8970–8975

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15. doi:10.1016/j.jhazmat.2009.03.137

    Article  CAS  PubMed  Google Scholar 

  • Hiraide M, Iwasawa J, Kawaguchi H (1997) Collection of trace heavy metals complexed with ammonium pyrrolidinedithiocarbamate on surfactant-coated alumina sorbents. Talanta 44(2):231–237. doi:10.1016/s0039-9140(96)02038-3

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466. doi:10.1016/s0141-0229(01)00528-2

    Article  CAS  Google Scholar 

  • Hong JW, Park JY, Gadd GM (2010) Pyrene degradation and copper and zinc uptake by Fusarium solani and Hypocrea lixii isolated from petrol station soil. J Appl Microbiol 108(6):2030–2040. doi:10.1111/j.1365-2672.2009.04613.x

    CAS  PubMed  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2002) Evaluation of remediation process with plant-derived biosurfactant for recovery of heavy metals from contaminated soils. Chemosphere 49(4):379–387. doi:10.1016/s0045-6535(02)00321-1

    Article  CAS  PubMed  Google Scholar 

  • Hostettmann K, Marston A (2005) Saponins. Cambridge University Press

  • Juhasz AL, Britz ML, Stanley GA (1997) Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a,h]anthracene by Burkholderia cepacia. J Appl Microbiol 83(2):189–198 doi:10.1046/j.1365-2672.1997.00220.x

  • Kumari B, Rajput S, Gaur P, Singh SN, Singh DP (2014) Biodegradation of pyrene and phenanthrene by bacterial consortium and evaluation of role of surfactant. Cell Mol Biol 60(5):22–28

    CAS  PubMed  Google Scholar 

  • Li JL, Chen BH (2009) Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials 2(1):76–94

    Article  CAS  Google Scholar 

  • Liu H, Guo S, Jiao K, Hou J, Xie H, Xu H (2015) Bioremediation of soils co-contaminated with heavy metals and 2,4,5-trichlorophenol by fruiting body of Clitocybe maxima. J Hazard Mater 294:121–127. doi:10.1016/j.jhazmat.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  • Mang L, Zhong-Zhi Z, Jing-Xiu W, Min Z, Yu-Xin X, Xue-Jiao W (2014) Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea). Environ Sci Technol 48(2):1158–1165

    Article  Google Scholar 

  • Morley GF, Gadd GM (1995) Sorption of toxic metals by fungi and clay minerals. Mycol Res 99:1429–1438

    Article  CAS  Google Scholar 

  • Niu J, Dai Y, Guo H, Xu J, Shen Z (2013) Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor. J Hazard Mater 248-249:254–260. doi:10.1016/j.jhazmat.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  • Noordman WH, Wachter JHJ, de Boer GJ, Janssen DB (2002) The enhancement by surfactants of hexadecane degradation by Pseudomonas aeruginosa varies with substrate availability. J Biotechnol 94(2):195–212. doi:10.1016/s0168-1656(01)00405-9

    Article  CAS  PubMed  Google Scholar 

  • Novotny C, Erbanova P, Sasek V, Kubatova A, Cajthaml T, Lang E, Krahl J, Zadrazil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10(3):159–168. doi:10.1023/a:1008324111558

    Article  CAS  PubMed  Google Scholar 

  • Oleszek W, Price KR, Colquhoun IJ, Jurzysta M, Ploszynski M, Fenwick GR (1990) Isolation and identification of alfalfa (Medicago sativa L.) root saponins: their activity in relation to a fungal bioassay. J Agric Food Chem 38(9):1810–1817. doi:10.1021/jf00099a006

    Article  CAS  Google Scholar 

  • Osbourn AE, Bowyer P, Daniels MJ (1996) Saponin detoxification by plant pathogenic fungi. In: Waller GR, Yamasaki K (eds) Saponins used in traditional and modern medicine, Adv Exp Med Biol, vol 404. Plenum Press Div Plenum Publishing Corp, New York, pp. 547–555

    Chapter  Google Scholar 

  • Paula B, Sílvia F, Elisa S, Valentim C, Bastos MDL (2009) Tolerance and stress response of Macrolepiota procera to nickel. J Agr Food Chem 57(15):7145–7152

    Article  Google Scholar 

  • Pedetta A, Pouyte K, Seitz MKH, Babay PA, Espinosa M, Costagliola M, Studdert CA, Peressutti SR (2013) Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments. Int Biodeterior Biodegradation 84:161–167. doi:10.1016/j.ibiod.2012.04.018

    Article  CAS  Google Scholar 

  • Potin O, Veignie E, Rafin C (2004) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by Cladosporium sphaerospermum isolated from an aged PAH contaminated soil. FEMS Microbiol Ecol 51(1):71–78. doi:10.1016/j.femsec.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  • Prak D, Pritchard PH (2002) Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar nonionic surfactant solutions. Water Res 36(14):3463–3472

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149. doi:10.1016/j.tibtech.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Castro JI, Danell E, Pfeffer PE (2002) A C-13-NMR study of exudation and storage of carbohydrates and amino acids in the ectomycorrhizal edible mushroom Cantharellus cibarius. Mycologia 94(2):190–199. doi:10.2307/3761795

    Article  CAS  PubMed  Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142. doi:10.1017/s0953756202006548

    Article  CAS  Google Scholar 

  • Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodriguez-Vazquez R, Poggi-Varaldo H (2002) Degradation by white-rot fungi of high concentrations of PCB extracted from a contaminated soil. Adv Environ Res 6(4):559–568. doi:10.1016/s1093-0191(01)00102-2

    Article  Google Scholar 

  • Santos-Burgoa C, Rios C, Mercado LA, Arechiga-Serrano R, Cano-Valle F, Eden-Wynter RA, Texcalac-Sangrador JL, Villa-Barragan JP, Rodriguez-Agudelo Y, Montes S (2001) Exposure to manganese: health effects on the general population, a pilot study in Central Mexico. Environ Res 85(2):90–104. doi:10.1006/enrs.2000.4108

    Article  CAS  PubMed  Google Scholar 

  • Shiau BJ, Sabatini DA, Harwell JH (1995) Properties of food grade (edible) surfactants affecting subsurface remediation of chlorinated solvents. Environ Sci Techno 29(12):2929–2935. doi:10.1021/es00012a007

    Article  CAS  Google Scholar 

  • Sikkema J,., Bont JA, De, Poolman B,. (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sikkema J, Debont JAM, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269(11):8022–8028

    CAS  PubMed  Google Scholar 

  • Silva AR, Araújo JV, Braga FR, Benjamim LA, Souza DL, Carvalho RO (2011) Comparative analysis of destruction of the infective forms of Trichuris trichiura and Haemonchus contortus by nematophagous fungi Pochonia chlamydosporia; Duddingtonia flagrans and Monacrosporium thaumasium by scanning electron microscopy. Vet Microbiol 147(s 1–2):214–219

  • Singh AD, Vikineswary S, Abdullah N, Sekaran M (2011) Enzymes from spent mushroom substrate of Pleurotus sajor-caju for the decolourisation and detoxification of textile dyes. World J Microbiol Biotechnol 27(3):535–545. doi:10.1007/s11274-010-0487-3

    Article  CAS  Google Scholar 

  • Somashekaraiah B, Padmaja K, Prasad A (1992) Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): involvement of lipid peroxides in chlorphyll degradation. Physiol Plant 85(1):85–89

    Article  CAS  Google Scholar 

  • Song S, Zhu L, Zhou W (2008) Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant. Environ Pollut 156(3):1368–1370. doi:10.1016/j.envpol.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  • Stefan F, Zoltán G, Borut P, Vekoslava S, Radmila M, Miklós P, Peter R, Martin B (2005) The oxidative stress response of the yeast Candida intermedia to copper, zinc, and selenium exposure. J Basic Microbiol 45(2):125–135

    Article  Google Scholar 

  • Sudarat B, Britz ML, Stanley GA (1998) Surfactant-enhanced biodegradation of high molecular weight polycyclic aromatic hydrocarbons by stenotrophomonas maltophilia. Biotechnol Bioeng 59(4):482–494

  • Sun C, Oelmüller R (2010) Technical note: Piriformospora indica hyphae and chlamydospores by scanning electron microscopy. Endocytobiosis & Cell Research

    Google Scholar 

  • Sun Y, Yu H, Zhang J, Yin Y, Shi H, Wang X (2006) Bioaccumulation, depuration and oxidative stress in fish Carassius auratus under phenanthrene exposure. Chemosphere 63(8):1319–1327

    Article  CAS  PubMed  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140(1):19–26

    Article  CAS  Google Scholar 

  • Tian L, Ma P, Zhong JJ (2002) Kinetics and key enzyme activities of phenanthrene degradation by Pseudomonas mendocina. Process Biochem 37(12):1431–1437. doi:10.1016/s0032-9592(02)00032-8

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Andel JG, Van, Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 61(5):1699–1705

  • Wang H, Xu R, You L, Zhong G (2013) Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicol Environ Saf 94(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Ng TB (2006) Purification of a laccase from fruiting bodies of the mushroom Pleurotus eryngii. Appl Microbiol Biotechnol 69(5):521–525. doi:10.1007/s00253-005-0086-7

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Mulligan CN (2004) An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57(9):1079–1089. doi:10.1016/j.chemosphere.2004.08.019

    Article  PubMed  Google Scholar 

  • Wang XJ, Brusseau ML (1995) Simultaneous complexation of organic compounds and heavy-metals by a modified cyclodextrin. Environ Sci Technol 29(10):2632–2635. doi:10.1021/es00010a026

    Article  CAS  PubMed  Google Scholar 

  • Xia H, Chi X, Yan Z, Cheng W (2009) Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin. Bioresour Technol 100(20):4649–4653. doi:10.1016/j.biortech.2009.04.069

    Article  CAS  PubMed  Google Scholar 

  • Yuan S, Wu X, Wan J, Long H, Lu X, Wu X, Chen J (2010) Enhanced washing of HCB and Zn from aged sediments by TX-100 and EDTA mixed solutions. Geoderma 156(3–4):119–125. doi:10.1016/j.geoderma.2010.02.006

    Article  CAS  Google Scholar 

  • Zhang D, Zhu L (2012) Effects of Tween 80 on the removal, sorption and biodegradation of pyrene by Klebsiella oxytoca PYR-1. Environ Pollut 164:169–174. doi:10.1016/j.envpol.2012.01.036

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hu Y, Cao Y, Huang F, Xu H (2012a) Tolerance of lead by the fruiting body of Oudemansiella radicata. Chemosphere 88(4):467–475

    Article  CAS  PubMed  Google Scholar 

  • Zhang WW, Hu YJ, Cao YR, Huang FG, Xu H (2012b) Tolerance of lead by the fruiting body of Oudemansiella radicata. Chemosphere 88(4):467–475. doi:10.1016/j.chemosphere.2012.02.079

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Selvam A, Wong JW-C (2011) Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresour Technol 102(5):3999–4007. doi:10.1016/j.biortech.2010.11.088

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiang W, Ding J, Zhang X, Gao S (2007) Effect of Tween 80 and beta-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70(2):172–177. doi:10.1016/j.chemosphere.2007.06.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the NSFC (No. 41171253, No. J1103518), and the National High Technology Research and Development Program of China (No.2013AA06A210). The authors wish to thank Professor Dong Yu and Guanglei Cheng from Sichuan University for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Xu, Y., Ding, W. et al. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by Tween 80 and saponin. Appl Microbiol Biotechnol 100, 7249–7261 (2016). https://doi.org/10.1007/s00253-016-7551-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7551-3

Keywords

Navigation