Skip to main content
Log in

Biodegradation of polycyclic aromatic hydrocarbons by native Ganoderma sp. strains: identification of metabolites and proposed degradation pathways

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Since polycyclic aromatic hydrocarbons (PAHs) are mutagenic, teratogenic, and carcinogenic, they are of considerable environmental concern. A biotechnological approach to remove such compounds from polluted ecosystems could be based on the use of white-rot fungi (WRF). The potential of well-adapted indigenous Ganoderma strains to degrade PAHs remains underexplored. Seven native Ganoderma sp. strains with capacity to produce high levels of laccase enzymes and to degrade synthetic dyes were investigated for their degradation potential of PAHs. The crude enzymatic extracts produced by Ganoderma strains differentially degraded the PAHs assayed (naphthalene 34—73%, phenanthrene 9—67%, fluorene 11—64%). Ganoderma sp. UH-M was the most promising strain for the degradation of PAHs without the addition of redox mediators. The PAH oxidation performed by the extracellular enzymes produced more polar and soluble metabolites such as benzoic acid, catechol, phthalic and protocatechuic acids, allowing us to propose degradation pathways of these PAHs. This is the first study in which breakdown intermediates and degradation pathways of PAHs by a native strain of Ganoderma genus were determined. The treatment of PAHs with the biomass of this fungal strain enhanced the degradation of the three PAHs. The laccase enzymes played an important role in the degradation of these compounds; however, the role of peroxidases cannot be excluded. Ganoderma sp. UH-M is a promising candidate for the bioremediation of ecosystems polluted with PAHs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acevedo F, Pizzulb L, Pilar Castillo M, Cuevas R, Diez MC (2011) Degradation of polycyclic aromatic hydrocarbons by the Chilean white-rot fungus Anthracophyllum discolor. J Hazard Mater 185:212–219

    Article  CAS  PubMed  Google Scholar 

  • Agrawal N, Verma P, Shahi SK (2018) Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump. Bioresour Bioprocess 5:11. https://doi.org/10.1186/s40643-018-0197-5

    Article  Google Scholar 

  • Almaguer M, Rojas-Flores T, Rodríguez-Rajo J, Aira MJ (2014) Airborne basidiospores of Coprinus and Ganoderma in a Caribbean region. Aerobiologia 30:197–204

    Article  Google Scholar 

  • Arun A, PraveenRaja P, Arthi R, Ananthi M, Sathish Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:132–142

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2006) Fungal laccases-occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  CAS  PubMed  Google Scholar 

  • Berrin JG, Navarro D, Couturier M, Olivé C, Grisel S, Haon M, Taussac S, Lechat C, Courtecuisse R, Favel AP, Coutinho L, Lesage-Meessena A (2012) Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. Appl Environ Microbiol 78(18):6483–6490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia C (1996) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(1):292–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogan BW, Lahner LM, Sullivan WR, Paterek JR (2003) Degradation of straight-chain aliphatic and high-molecular-weight polycyclic aromatic hydrocarbons by a strains of Mycobacterium austroafricanum. J Appl Microbiol 94:230–239

    Article  CAS  PubMed  Google Scholar 

  • Cabarroi M, Maldonado S, Castillo L (2008) Hongos del Jardín Botánico nacional de Cuba. Revista del Jardín Botánico Nacional 29:161–169

    Google Scholar 

  • Ceci A, Pinzari F, Russo F, Persiani AM, Gadd M (2018) Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites. Appl Microbiol Biotechnol 103:53–68. https://doi.org/10.1007/s00253-018-9451-1

    Article  CAS  PubMed  Google Scholar 

  • Chupungars K, Rerngsamran P, Thaniyavarn S (2009) Polycyclic aromatic hydrocarbons degradation by Agrocybe sp. CU-43 and its fluorene transformation. Int Biodeterior Biodegradation 63(1):93–99

    Article  CAS  Google Scholar 

  • Claiborne A, Fridovich I (1979) Purification of the o-dianisidine peroxidase from Escherichia coli. Physicochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem 254:4245–4252

    CAS  PubMed  Google Scholar 

  • Fadzil M, Mohd T, Mohd W, Darul KN (2008) Concentration and distribution of polycyclic aromatic hydrocarbons (PAHs) in the town of Kota Bharu. Malay J Anal Sci 12(3):609–618

    Google Scholar 

  • Field JA, Jong E, Feijoo Costa G, Bont JA (1992 Jul) Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Appl Environ Microbiol 58(7):2219–2226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hadibarata T, Tachibana S (2009) Identification of phenanthrene metabolites produced by Polyporus sp. S133. Interdisciplinary studies on environmental chemistry—environmental research in Asia. In: Obayashi Y, Isobe T, Subramanian A, Suzuki S, Tanabe S, pp 293–299

  • Hadibarata T, Yusoff ARM, Aris A, Kristanti RA (2012) Identification of naphthalene metabolism by white rot fungus Armillaria sp. Folia Microbiol 58(5):385–391. https://doi.org/10.1007/s12223-013-0221-2

    Article  CAS  Google Scholar 

  • Hadibarata T, Fikri M, Zubir A, Rubiyatno L, Chuang T, Mohd A, Razman M, Salim Mohammad A (2013) Degradation and transformation of anthracene by white-rot fungus Armillaria sp. F022. Folia Microbiol 58:385–391. https://doi.org/10.1007/s12223-013-0221-2

    Article  CAS  Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1832–1818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  PubMed  Google Scholar 

  • Husain Q (2006) Potential Applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26(4):201–221

    Article  CAS  PubMed  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khammuang S, Sarnthima R (2009) Laccase activity from fresh fruiting bodies of Ganoderma sp. MK05: purification and remazol brilliant blue R decolorization. J Biol Sci 9(1):83–87

    Article  CAS  Google Scholar 

  • Levin L, Melignani E, Ramos A (2010) Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates. Bioresour Technol 101:4554–4563

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Gan S, Kiat H (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83:1414–1430

    Article  CAS  Google Scholar 

  • Majeau JA, Brar SK, Tyagi R (2010) Laccases for removal of recalcitrant and emerging pollutants. Bioresour Technol 101:2331–2350

    Article  CAS  PubMed  Google Scholar 

  • Malarczyk E, Kochmanska-Rdest J, Jarosz-Wilkolazka A (2009) Influence of very low doses of mediators on fungal laccase activity-nonlinearity beyond imagination. Nonlinear Biomed Phys 3:10. https://doi.org/10.1186/1753-4631-3-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manavalan T, Manavalan A, Kalaichelvan P, Thangavelua P, Heesed K (2013) Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochem Eng J 70:106–114

    Article  CAS  Google Scholar 

  • Manoli E, Kouras A, Karagkiozidou O, Argyropoulos G, Voutsa D, Samara C (2016) Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk. Environ Sci Pollut Res 23:3556–3568

    Article  CAS  Google Scholar 

  • Manzano AM, Torres G, González A, Banguela A, Ramos-G onzález PL, Valiente PA, Sánchez MI, Lamar A, Rochefort D, Mclean MD, Ramos-Leal M, Guerra G (2013) Role of laccase isozymes in textile dye decolorization and diversity of laccase genes from Ganoderma weberianum B-18. J Appl Sci Environ Sanit 8:237–242 (ISSN 0126-2807)

    Google Scholar 

  • Marco-Urrea E, Gabarrell X, Caminal G, Vincent T, Reddy CA (2008) Aerobic degradation by white-rot fungi of trichloroethylene (TCE) and mixtures of TCE and perchloroethylene (PCE). J Chem Technol Biotechnol 83(9):1190–1196

    Article  CAS  Google Scholar 

  • Minter et al.2001Minter, D. W., Rodríguez, M., and Mena J. (2001). Fungi of the Caribbean. An Annotated Checklist. London: PDMS Publishing.

  • Mirza R, Faghiri I, Abedi E (2012) Contamination of polycyclic aromatic hydrocarbons in surface sediments of Khure-Musa Estuarine, Persian Gulf. World J Fish Mar Sci 4(2):136–141. https://doi.org/10.5829/idosi.wjfms.2012.04.02.56332

    Article  CAS  Google Scholar 

  • Murugesan, K, In-Hyun, N, Kim, Y, and Chang, Y (2007) Decolorizationof reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb. Tech. 4, 1662–1672. doi: 10.1016/j.enzmictec.2006.08.028 https://doi.org/10.1016/j.enzmictec.2006.08.028

  • Novotný Č, Erbanová P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54(6):850–853

    Article  PubMed  Google Scholar 

  • Novotný Č, Svobodova K, Erbanova P, Cajthaml T, Kasinatha A, Lang E (2004) Lignolytic fungi in bioremediation: extracellular enzyme production and degradation rate. Soil Biol Biochem 36:1545–1551

    Article  CAS  Google Scholar 

  • Pointing SB, Bucher VVC, Vrijmoed LLP (2000) Dye decolorization by subtropical basidiomycetous fungi and the effect of metals on dye degradation. World J Microbiol Biotechnol 16:199–205

    Article  CAS  Google Scholar 

  • Pozdnyakova NN, Chernyshovaa MP, Grineva VS, Landesmanb EO, Turkovskayaa V (2016) Degradation of fluorene and fluoranthene by the basidiomycete Pleurotu sostreatus. Appl Biochem Microbiol 52(6):621–628

  • Revankar MS, Lele S (2007) Synthetic dye decolourization by White Rot Fungus, Ganoderma sp. WR-I. Bioresour Technol 98:775–780

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Couto S (2007) Decolouration of industrial azo dyes by crude laccase from Trametes hirsuta. J Hazard Mater 148:768–770

    Article  CAS  Google Scholar 

  • Rodríguez-Couto S, Rosales E, Sanromán MA (2006) Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere 62:1558–1563. https://doi.org/10.1016/j.chemosphere.2005.06.042

  • Samanta S, Singh OM, JainT R (2011) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20(6):243–248

  • Shrestha P, Joshi B, Malla R, Sreerama L (2016) Isolation and physicochemical characterization of laccase from Ganoderma lucidum-CDBT1 isolated from its native habitat in Nepal. Biomed Res Int 2016:1–10. https://doi.org/10.1155/2016/3238909

    Article  CAS  Google Scholar 

  • Srinivasan C, D’Souza TM, Boominathan K, Reddy CA (1995) Demonstration of laccase in the white rot basidiomycete Phanerochaete chrysosporium BKM F1767. Appl Environ Microbiol 61:4274–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teerapatsakul C, Abe N, Bucke C, Chitradon L (2007) Novel laccases of Ganoderma sp. KU-Alk4, regulated by different glucose concentration in alkaline media. World J Microbiol Biotechnol 23:1559–1567

    Article  CAS  Google Scholar 

  • Ting WTE, Yuan SY, Wu SD, Chang BV (2011) Biodegradation of phenanthrene and pyrene by Ganoderma lucidum. Int Biodeterior Biodegradation 65:238–242

    Article  CAS  Google Scholar 

  • Torres-Farradá G, Manzano AM, Rineau F, Ledo LL, Sánchez- López MI, Thijs S, Colpaert J, Ramos-Leal M, Guerra G, Vangronsveld J (2017) Diversity of ligninolytic enzymes and their genes in strains of the genus Ganoderma: applicable for biodegradation of xenobiotic compounds? Front Microbiol 8:898. https://doi.org/10.3389/fmicb.2017.00898

    Article  PubMed  PubMed Central  Google Scholar 

  • Torres-Farradá G, Manzano AM, Ramos-Leal M, Domínguez O, Sánchez MI, Jaco Vangronsveld J, Guerra G (2018) Biodegradation and detoxification of dyes and industrial effluents by Ganoderma weberianum B-18 immobilized in a lab-scale packed-bed bioreactor. Bioremediat J 22(4):1–8. https://doi.org/10.1080/10889868.2018.1476450

    Article  CAS  Google Scholar 

  • Torres–Torres MG, Guzmán–Dávalos L (2005) Variación morfológica de Ganoderma curtisii en México. Rev Mex Micol 21:39–47

    Google Scholar 

  • Wesenberg D, Kyriakides I, Agathos S (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:161–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support of the following grants: the BOF-BILA grant from Hasselt University for G. Torres-Farradá, the UHasselt Methusalem project 08M03VGRJ and to the International Foundation for Sciences (IFS, Sweden) (grant F/4442-2). The authors are also grateful to the technical support of Carine Put and Ann Wijgaerts.

Funding

This work was supported by a BOF BILA grant from Hasselt University for G. Torres Farradá, by the UHasselt Methusalem project 08M03VGRJ, and by the International Foundation for Sciences (IFS, Sweden) (grant F/4442-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giselle Torres-Farradá.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

No ethical approval is required since this article does not have studies with animals or humans.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres-Farradá, G., Manzano-León, A.M., Rineau, F. et al. Biodegradation of polycyclic aromatic hydrocarbons by native Ganoderma sp. strains: identification of metabolites and proposed degradation pathways. Appl Microbiol Biotechnol 103, 7203–7215 (2019). https://doi.org/10.1007/s00253-019-09968-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09968-9

Keywords

Navigation