Skip to main content
Log in

Direct derivation of “mirror” ABJ partition function

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We study the partition function of the three-dimensional \( \mathcal{N} \) = 6 U(N) k × U(N + M)k superconformal Chern-Simons matter theory known as the ABJ theory. We prove that the ABJ partition function on S 3 is exactly the same as a formula recently proposed by Awata, Hirano and Shigemori. While this formula was previously obtained by an analytic continuation from the L(2, 1) lens space matrix model, we directly derive this by using a generalization of the Cauchy determinant identity. We also give an interpretation for the formula from brane picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. N. Hama, K. Hosomichi and S. Lee, Notes on SUSY Gauge Theories on Three-Sphere, JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. K. Ohta and Y. Yoshida, Non-Abelian Localization for Supersymmetric Yang-Mills -Chern-Simons Theories on Seifert Manifold, Phys. Rev. D 86 (2012) 105018 [arXiv:1205.0046] [INSPIRE].

    ADS  Google Scholar 

  7. N. Drukker, T. Okuda and F. Passerini, Exact results for vortex loop operators in 3d supersymmetric theories, arXiv:1211.3409 [INSPIRE].

  8. L.F. Alday, D. Martelli, P. Richmond and J. Sparks, Localization on Three-Manifolds, arXiv:1307.6848 [INSPIRE].

  9. J. Nian, Localization of Supersymmetric Chern-Simons-Matter Theory on a Squashed S 3 with SU(2) × U(1) Isometry, arXiv:1309.3266 [INSPIRE].

  10. A. Tanaka, Localization on round sphere revisited, JHEP 11 (2013) 103 [arXiv:1309.4992] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. N. Drukker, M. Mariño and P. Putrov, From weak to strong coupling in ABJM theory, Commun. Math. Phys. 306 (2011) 511 [arXiv:1007.3837] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. H. Fuji, S. Hirano and S. Moriyama, Summing Up All Genus Free Energy of ABJM Matrix Model, JHEP 08 (2011) 001 [arXiv:1106.4631] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. T. Suyama, On Large-N Solution of ABJM Theory, Nucl. Phys. B 834 (2010) 50 [arXiv:0912.1084] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. T. Suyama, Eigenvalue Distributions in Matrix Models for Chern-Simons-matter Theories, Nucl. Phys. B 856 (2012) 497 [arXiv:1106.3147] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. N. Drukker and D. Trancanelli, A supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C.P. Herzog, I.R. Klebanov, S.S. Pufu and T. Tesileanu, Multi-Matrix Models and Tri-Sasaki Einstein Spaces, Phys. Rev. D 83 (2011) 046001 [arXiv:1011.5487] [INSPIRE].

    ADS  Google Scholar 

  18. N. Drukker, M. Mariño and P. Putrov, Nonperturbative aspects of ABJM theory, JHEP 11 (2011) 141 [arXiv:1103.4844] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. K. Okuyama, A Note on the Partition Function of ABJM theory on S 3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  20. M. Mariño and P. Putrov, ABJM theory as a Fermi gas, J. Stat. Mech. 1203 (2012) P03001 [arXiv:1110.4066] [INSPIRE].

    MathSciNet  Google Scholar 

  21. M. Hanada, M. Honda, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Numerical studies of the ABJM theory for arbitrary N at arbitrary coupling constant, JHEP 05 (2012) 121 [arXiv:1202.5300] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Honda, M. Hanada, Y. Honma, J. Nishimura, S. Shiba and Y. Yoshida, Monte Carlo studies of 3d N = 6 SCFT via localization method, PoS(Lattice 2012)233 [arXiv:1211.6844] [INSPIRE].

  23. A. Klemm, M. Mariño, M. Schiereck and M. Soroush, ABJM Wilson loops in the Fermi gas approach, arXiv:1207.0611 [INSPIRE].

  24. Y. Hatsuda, S. Moriyama and K. Okuyama, Exact Results on the ABJM Fermi Gas, JHEP 10 (2012) 020 [arXiv:1207.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  25. P. Putrov and M. Yamazaki, Exact ABJM Partition Function from TBA, Mod. Phys. Lett. A 27 (2012) 1250200 [arXiv:1207.5066] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Bhattacharyya, A. Grassi, M. Mariño and A. Sen, A One-Loop Test of Quantum Supergravity, Class. Quant. Grav. 31 (2013) 015012 [arXiv:1210.6057] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Effects in ABJM Theory from Fermi Gas Approach, JHEP 01 (2013) 158 [arXiv:1211.1251] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. F. Calvo and M. Mariño, Membrane instantons from a semiclassical TBA, JHEP 05 (2013) 006 [arXiv:1212.5118] [INSPIRE].

    Article  ADS  Google Scholar 

  29. Y. Hatsuda, S. Moriyama and K. Okuyama, Instanton Bound States in ABJM Theory, JHEP 05 (2013) 054 [arXiv:1301.5184] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. Y. Hatsuda, M. Mariño, S. Moriyama and K. Okuyama, Non-perturbative effects and the refined topological string, arXiv:1306.1734 [INSPIRE].

  31. J. Kallen and M. Mariño, Instanton effects and quantum spectral curves, arXiv:1308.6485 [INSPIRE].

  32. A. Grassi, J. Kallen and M. Mariño, The topological open string wavefunction, arXiv:1304.6097 [INSPIRE].

  33. Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson Loops in Arbitrary Representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].

    MATH  Google Scholar 

  35. M. Mariño, Lectures on non-perturbative effects in large-N gauge theories, matrix models and strings, arXiv:1206.6272 [INSPIRE].

  36. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. M. Mariño and P. Putrov, Interacting fermions and N = 2 Chern-Simons-matter theories, arXiv:1206.6346 [INSPIRE].

  38. A. Cagnazzo, D. Sorokin and L. Wulff, String instanton in AdS 4 × CP 3, JHEP 05 (2010) 009 [arXiv:0911.5228] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  39. K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  42. S. Giombi et al., Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].

    Article  ADS  Google Scholar 

  43. H. Awata, S. Hirano and M. Shigemori, The Partition Function of ABJ Theory, Prog. Theor. Exp. Phys. (2013) 053B04 [arXiv:1212.2966] [INSPIRE].

  44. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. D.R. Gulotta, C.P. Herzog and S.S. Pufu, From Necklace Quivers to the F-theorem, Operator Counting and T(U(N)), JHEP 12 (2011) 077 [arXiv:1105.2817] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, JHEP 05 (2012) 099 [arXiv:1105.2551] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. T. Nishioka, Y. Tachikawa and M. Yamazaki, 3d Partition Function as Overlap of Wavefunctions, JHEP 08 (2011) 003 [arXiv:1105.4390] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. C.A. Tracy and H. Widom, Proofs of two conjectures related to the thermodynamic Bethe ansatz, Commun. Math. Phys. 179 (1996) 667 [solv-int/9509003] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. M. Mariño, Chern-Simons theory, matrix integrals and perturbative three manifold invariants, Commun. Math. Phys. 253 (2004) 25 [hep-th/0207096] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. M. Aganagic, A. Klemm, M. Mariño and C. Vafa, Matrix model as a mirror of Chern-Simons theory, JHEP 02 (2004) 010 [hep-th/0211098] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  52. S.A. Yost, Supermatrix models, Int. J. Mod. Phys. A 7 (1992) 6105 [hep-th/9111033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. R. Dijkgraaf and C. Vafa, N = 1 supersymmetry, deconstruction and bosonic gauge theories, hep-th/0302011 [INSPIRE].

  54. R. Dijkgraaf, S. Gukov, V.A. Kazakov and C. Vafa, Perturbative analysis of gauged matrix models, Phys. Rev. D 68 (2003) 045007 [hep-th/0210238] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. E.L. Basor and P.J. Forrester, Formulas for the Evaluation of Toeplitz Determinants with Rational Generating Functions, Math. Nachr. 170 (1994) 5.

    Article  MathSciNet  MATH  Google Scholar 

  56. B. Willett and I. Yaakov, N = 2 Dualities and Z Extremization in Three Dimensions, arXiv:1104.0487 [INSPIRE].

  57. A. Kapustin, B. Willett and I. Yaakov, Tests of Seiberg-like Duality in Three Dimensions, arXiv:1012.4021 [INSPIRE].

  58. M. Mariño, Chern-Simons theory and topological strings, Rev. Mod. Phys. 77 (2005) 675 [hep-th/0406005] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. M. Tierz, Soft matrix models and Chern-Simons partition functions, Mod. Phys. Lett. A 19 (2004) 1365 [hep-th/0212128] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B 812 (2009) 1 [arXiv:0808.0360] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p,q)-fivebrane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  63. K. Ohta, Supersymmetric index and s rule for type IIB branes, JHEP 10 (1999) 006 [hep-th/9908120] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  64. A. Hashimoto, S. Hirano and P. Ouyang, Branes and fluxes in special holonomy manifolds and cascading field theories, JHEP 06 (2011) 101 [arXiv:1004.0903] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. T. Suyama, Supersymmetry Breaking in Chern-Simons-matter Theories, JHEP 07 (2012) 008 [arXiv:1203.2039] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  66. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. F. Nieri, S. Pasquetti and F. Passerini, 3d & 5d gauge theory partition functions as q-deformed CFT correlators, arXiv:1303.2626 [INSPIRE].

  68. M. Aganagic, R. Dijkgraaf, A. Klemm, M. Mariño and C. Vafa, Topological strings and integrable hierarchies, Commun. Math. Phys. 261 (2006) 451 [hep-th/0312085] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masazumi Honda.

Additional information

ArXiv ePrint: 1310.3126

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honda, M. Direct derivation of “mirror” ABJ partition function. J. High Energ. Phys. 2013, 46 (2013). https://doi.org/10.1007/JHEP12(2013)046

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP12(2013)046

Keywords

Navigation